Diffusion of a sphere in homogeneous flow

被引:0
|
作者
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] 2-PHASE FLOW IN A VERTICAL PIPE AND THE PHENOMENON OF CHOKING - HOMOGENEOUS DIFFUSION-MODEL .1. HOMOGENEOUS FLOW MODELS
    BILICKI, Z
    KESTIN, J
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1983, 9 (03) : 269 - 288
  • [22] A "Gaussian" for diffusion on the sphere
    Ghosh, Abhijit
    Samuel, Joseph
    Sinha, Supurna
    EPL, 2012, 98 (03)
  • [23] Structure of a diffusion-induced flow near a sphere in a continuously stratified fluid
    Baydulov, VG
    Matyushin, PV
    Chashechkin, YD
    DOKLADY PHYSICS, 2005, 50 (04) : 195 - 199
  • [24] Structure of a diffusion-induced flow near a sphere in a continuously stratified fluid
    V. G. Baydulov
    P. V. Matyushin
    Yu. D. Chashechkin
    Doklady Physics, 2005, 50 : 195 - 199
  • [25] Optimal Finite Homogeneous Sphere Approximation
    Omer Lavi
    Discrete & Computational Geometry, 2022, 67 : 1080 - 1096
  • [26] RADIATION FROM A HOMOGENEOUS ISOTHERMAL SPHERE
    KATTAWAR, GW
    EISNER, M
    APPLIED OPTICS, 1970, 9 (12): : 2685 - &
  • [27] Homogeneous sphere packings with triclinic symmetry
    Fischer, W
    Koch, E
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : 509 - 513
  • [28] Preparation and Characterization of Homogeneous Hydroxyapatite Sphere
    Lee, Kang Huk
    Shin, Dong Geun
    Kwon, Woo Teck
    Kim, Hyungsun
    Kim, Hee Rae
    Kim, Younghee
    Kim, Soo Ryong
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2014, 51 (03) : 145 - 149
  • [29] Homogeneous surfaces in Lie sphere geometry
    Tongzhu Li
    Geometriae Dedicata, 2010, 149 : 15 - 43
  • [30] Homogeneous surfaces in Lie sphere geometry
    Li, Tongzhu
    GEOMETRIAE DEDICATA, 2010, 149 (01) : 15 - 43