Hyperchaos in dynamical systems with a monoactive degree of freedom

被引:0
|
作者
Tamasevicius, A. [1 ]
Cenys, A. [1 ]
机构
[1] Semiconductor Physics Inst, Vilnius, Lithuania
来源
Chaos, solitons and fractals | 1998年 / 9卷 / 1-2期
关键词
Number:; -; Acronym:; EEC; Sponsor: Emory Eye Center;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:115 / 119
相关论文
共 50 条
  • [1] Hyperchaos in dynamical systems with a monoactive degree of freedom
    Tamasevicius, A
    Cenys, A
    [J]. CHAOS SOLITONS & FRACTALS, 1998, 9 (1-2) : 115 - 119
  • [3] Synchronising hyperchaos in infinite-dimensional dynamical systems
    Tamasevicius, A
    Cenys, A
    Namajunas, A
    Mykolaitis, G
    [J]. CHAOS SOLITONS & FRACTALS, 1998, 9 (08) : 1403 - 1408
  • [4] Synchronizing hyperchaos in infinite-dimensional dynamical systems
    Semiconductor Physics Inst, Vilnius, Lithuania
    [J]. Chaos Solitons Fractals, 8 (1403-1408):
  • [5] HOMOTOPY ANALYSIS METHOD FOR MULTI-DEGREE-OF-FREEDOM NONLINEAR DYNAMICAL SYSTEMS
    Zhang, W.
    Qian, Y. H.
    Yao, M. H.
    Lai, S. K.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, DETC 2010, VOL 3, A AND B, 2010, : 19 - +
  • [6] DYNAMICAL-SYSTEMS WITH RIGID-BODY DEGREE-OF-FREEDOM OSCILLATORS
    RAHULKUMAR, P
    BROOME, TH
    SAIGAL, S
    [J]. JOURNAL OF ENGINEERING MECHANICS-ASCE, 1995, 121 (03): : 487 - 491
  • [7] The theory of response analysis of fuzzy stochastic dynamical systems with a single degree of freedom
    Zhang, Y
    Wang, GY
    Su, F
    Zhong, Q
    [J]. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1996, 25 (03): : 235 - 251
  • [8] Synchronizing and controlling hyperchaos in laser and its cascading dynamical systems
    China Research Inst of Atomic Energy, Science and Technology, Beijing, China
    [J]. Qiangjiguang Yu Lizishu, 1 (138-148):
  • [9] ISOVORTICAL ORBITS OF AUTONOMOUS, CONSERVATIVE, 2-DEGREE-OF-FREEDOM DYNAMICAL-SYSTEMS
    HOUGH, ME
    [J]. CELESTIAL MECHANICS, 1985, 36 (01): : 1 - 18
  • [10] Phase Diagram for Norms of the Solution Vector of Dynamical Multi-Degree-of-Freedom Systems
    Kohaupt, Ludwig
    [J]. PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS: RECENT ADVANCES IN APPLIED MATHEMATICS, 2009, : 69 - +