Assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data

被引:0
|
作者
Boston Univ, Boston, United States [1 ]
机构
来源
Remote Sens Environ | / 1卷 / [d]66-77期
关键词
This research was funded by Pest Management in Region 5 of the U.S. Forest Service. The authors also thank Lisa Levien;
D O I
暂无
中图分类号
学科分类号
摘要
27
引用
收藏
相关论文
共 50 条
  • [41] Modeling and mapping forest Biomass using forest inventory and landsat TM data: Results from the foothills model forest, Alberta.
    Hall, RJ
    Case, BS
    Arsenault, E
    Price, DT
    Luther, JE
    Piercey, DE
    Guindon, L
    Fournier, RA
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1320 - 1323
  • [42] Comparison of Change Detection Techniques for Monitoring Tehri Darn using Landsat Data
    Kumar, M.
    Kqadri, A.
    Kumar, J. L. G.
    Denis, D. M.
    GRAND CHALLENGES FACING HYDROLOGY IN THE 21ST CENTURY, 2014, : 193 - 200
  • [43] MAPPING AND CHANGE ANALYSIS IN MANGROVE FOREST BY USING LANDSAT IMAGERY
    Dan, T. T.
    Chen, C. F.
    Chiang, S. H.
    Ogawa, S.
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 3 (08): : 109 - 116
  • [44] Detecting climate change effects on forest ecosystems in Southwestern Romania using Landsat TM NDVI data
    Remus Pravalie
    Igor Sîrodoev
    Daniel Peptenatu
    Journal of Geographical Sciences, 2014, 24 : 815 - 832
  • [45] MAPPING FOREST VEGETATION USING LANDSAT TM IMAGERY AND A CANOPY REFLECTANCE MODEL
    WOODCOCK, CE
    COLLINS, JB
    GOPAL, S
    JAKABHAZY, VD
    LI, XW
    MACOMBER, S
    RYHERD, S
    HARWARD, VJ
    LEVITAN, J
    WU, YC
    WARBINGTON, R
    REMOTE SENSING OF ENVIRONMENT, 1994, 50 (03) : 240 - 254
  • [46] Detecting climate change effects on forest ecosystems in Southwestern Romania using Landsat TM NDVI data
    Pravalie, Remus
    Sirodoev, Igor
    Peptenatu, Daniel
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2014, 24 (05) : 815 - 832
  • [47] A classification of multitemporal Landsat TM data using principal component analysis & artificial neural network
    Chae, HS
    Kim, SJ
    Ryu, JA
    IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 517 - 520
  • [48] Mapping shallow lakes in a large South American floodplain: A frequency approach on multitemporal Landsat TM/ETM data
    Borro, Marta
    Morandeira, Natalia
    Salvia, Mercedes
    Minotti, Priscilla
    Perna, Pablo
    Kandus, Patricia
    JOURNAL OF HYDROLOGY, 2014, 512 : 39 - 52
  • [49] Classification and change detection using Landsat TM data: When and how to correct atmospheric effects?
    Song, C
    Woodcock, CE
    Seto, KC
    Lenney, MP
    Macomber, SA
    REMOTE SENSING OF ENVIRONMENT, 2001, 75 (02) : 230 - 244
  • [50] Accuracy of forest mapping based on Landsat TM data and a kNN-based method
    Gjertsen, Amt Kristian
    REMOTE SENSING OF ENVIRONMENT, 2007, 110 (04) : 420 - 430