Hydrogen diffusion at moderate temperatures in p-type Czochralski silicon

被引:0
|
作者
机构
[1] Huang, Y.L.
[2] Ma, Y.
[3] Job, R.
[4] Ulyashin, A.G.
来源
Huang, Y.L. (yuelong.huang@fernuni-hagen.de) | 1600年 / American Institute of Physics Inc.卷 / 96期
关键词
Activation energy - Catalysis - Crystal growth from melt - Deep level transient spectroscopy - Doping (additives) - Hydrogen - Hydrogenation - Passivation - Secondary ion mass spectrometry - Semiconducting silicon;
D O I
暂无
中图分类号
学科分类号
摘要
In plasma-hydrogenated p-type Czochralski silicon, rapid thermal donor (TD) formation is achieved, resulting from the catalytic support of hydrogen. The n-type counter doping by TD leads to a p-n junction formation. A simple method for the indirect determination of the diffusivity of hydrogen via applying the spreading resistance probe measurements is presented. Hydrogen diffusion in silicon during both plasma hydrogenation and post-hydrogenation annealing is investigated. The impact of the hydrogenation duration, annealing temperature, and resistivity of the silicon wafers on the hydrogen diffusion is discussed. Diffusivities of hydrogen are determined in the temperature range 270-450°C. The activation energy for the hydrogen diffusion is deduced to be 1.23 eV. The diffusion of hydrogen is interpreted within the framework of a trap-limited diffusion mechanism. Oxygen and hydrogen are found to be the main traps. © 2004 American Institute of Physics.
引用
收藏
相关论文
共 50 条
  • [31] Low-temperature doping of p-type Czochralski silicon due to hydrogen plasma enhanced thermal donor formation
    Ulyashin, AG
    Bumay, YA
    Job, R
    Grabosch, G
    Borchert, D
    Fahrner, WR
    Diduk, AY
    SOLID STATE PHENOMENA, 1997, 57-8 : 189 - 194
  • [32] ON THE MODELING OF HYDROGEN DIFFUSION-PROCESSES AND COMPLEX-FORMATION IN P-TYPE CRYSTALLINE SILICON
    RIZK, R
    DEMIERRY, P
    BALLUTAUD, D
    AUCOUTURIER, M
    MATHIOT, D
    PHYSICA B, 1991, 170 (1-4): : 129 - 134
  • [33] The influence of low-energy argon implantation and out-diffusion heat treatments on hydrogen enhanced thermal donor formation in p-type Czochralski silicon
    Ulyashin, AG
    Petlitskii, AN
    Job, R
    Fahrner, WR
    Fedotov, AK
    Stognii, AI
    SOLID STATE PHENOMENA, 1999, 70 : 409 - 414
  • [34] INVESTIGATION OF LASER DIFFUSION IN N-TYPE AND P-TYPE SILICON
    ARAKELYAN, VS
    BARKHUDARYAN, GR
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1987, 21 (10): : 1154 - 1155
  • [35] Effect of point defects on the recombination activity of copper precipitates in p-type Czochralski silicon
    Wang, Weiyan
    Yang, Deren
    Yu, Xuegong
    Que, Duanlin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2008, 19 : S32 - S35
  • [36] 18.7% efficient laser-doped solar cell on p-type Czochralski silicon
    Hameiri, Z.
    Mai, L.
    Sproul, A.
    Wenham, S. R.
    APPLIED PHYSICS LETTERS, 2010, 97 (22)
  • [37] A novel method to enhance the gettering efficiency in p-type Czochralski silicon by a sacrificial porous silicon layer
    Zhang Caizhen
    Wang Yongshun
    Wang Zaixing
    JOURNAL OF SEMICONDUCTORS, 2011, 32 (03)
  • [38] Low temperature iron gettering by grown-in defects in p-type Czochralski silicon
    Zhu, Haiyan
    Yu, Xuegong
    Zhu, Xiaodong
    Wu, Yichao
    He, Jian
    Vanhellemont, Jan
    Yang, Deren
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 99 : 192 - 196
  • [39] Charge collection measurements with p-type Magnetic Czochralski silicon single pad detectors
    Tosi, C.
    Bruzzi, M.
    Macchiolo, A.
    Scaringefla, M.
    Petterson, M. K.
    Sadrozinski, H. F. -W.
    Betancourt, C.
    Manna, N.
    Creanza, D.
    Boscardin, M.
    Piemonte, C.
    Zorzi, N.
    Borrello, L.
    Messineo, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 579 (02): : 766 - 768
  • [40] Effect of point defects on the recombination activity of copper precipitates in p-type Czochralski silicon
    Wang W.
    Yang D.
    Yu X.
    Que D.
    Journal of Materials Science: Materials in Electronics, 2008, 19 (SUPPL. 1) : S32 - S35