Convergence of algorithms used for principal component analysis

被引:0
|
作者
Zhang, Junhua
Hanfu, Chen
机构
[1] Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China
[2] Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
10
引用
收藏
页码:6 / 604
相关论文
共 50 条
  • [21] Constrained Projection Approximation Algorithms for Principal Component Analysis
    Seungjin Choi
    Jong-Hoon Ahn
    Andrzej Cichocki
    Neural Processing Letters, 2006, 24 : 53 - 65
  • [22] Classical and Quantum Algorithms for Tensor Principal Component Analysis
    Hastings, Matthew B.
    QUANTUM, 2020, 4
  • [23] Algorithms for Projection - Pursuit robust principal component analysis
    Croux, C.
    Filzmoser, P.
    Oliveira, M. R.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 87 (02) : 218 - 225
  • [24] Efficient Recursive Principal Component Analysis Algorithms for Process Monitoring
    Elshenawy, Lamiaa M.
    Yin, Shen
    Naik, Amol S.
    Ding, Steven X.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (01) : 252 - 259
  • [25] Continuous estimation of distribution algorithms with probabilistic principal component analysis
    Cho, DY
    Zhang, BT
    PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, : 521 - 526
  • [26] Optimal learning rates for some principal component analysis algorithms
    Chiu, Shih-Yu
    Lan, Leu-Shing
    Hwang, Yu-Cheng
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 2223 - 2226
  • [27] Side Information in Robust Principal Component Analysis: Algorithms and Applications
    Xue, Niannan
    Panagakis, Yannis
    Zafeiriou, Stefanos
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 4327 - 4335
  • [28] The Sparse Principal Component Analysis Problem: Optimality Conditions and Algorithms
    Amir Beck
    Yakov Vaisbourd
    Journal of Optimization Theory and Applications, 2016, 170 : 119 - 143
  • [29] Low complexity adaptive algorithms for Principal and Minor Component Analysis
    Thameri, Messaoud
    Abed-Meraim, Karim
    Belouchrani, Adel
    DIGITAL SIGNAL PROCESSING, 2013, 23 (01) : 19 - 29
  • [30] The Sparse Principal Component Analysis Problem: Optimality Conditions and Algorithms
    Beck, Amir
    Vaisbourd, Yakov
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (01) : 119 - 143