Homoclinic intersections and Mel'nikov method for perturbed sine-Gordon equation

被引:0
|
作者
Rothos, Vassilios M. [1 ,2 ]
机构
[1] Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
[2] Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
关键词
Boundary conditions - Chaos theory - Dynamics - Geometry - Mathematical models - Mathematical transformations - Partial differential equations - Perturbation techniques;
D O I
10.1080/14689360109696237
中图分类号
学科分类号
摘要
We describe and characterize rigorously the homoclinic structure of the perturbed sine-Gordon equation under periodic boundary conditions. The existence of invariant manifolds for a perturbed sine-Gordon equation is established. The Mel'nikov method, together with geometric analysis are used to assess the persistence of the homoclinic orbits under bounded and time-periodic perturbations.
引用
收藏
页码:279 / 302
相关论文
共 50 条
  • [21] On kink-dynamics of the perturbed sine-Gordon equation
    Maksimov, AG
    Pedersen, NF
    Christiansen, PL
    Molkov, JI
    Nekorkin, VI
    WAVE MOTION, 1996, 23 (02) : 203 - 213
  • [22] NONPERSISTENCE OF BREATHER FAMILIES FOR THE PERTURBED SINE-GORDON EQUATION
    DENZLER, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 158 (02) : 397 - 430
  • [23] Travelling waves in a perturbed discrete sine-Gordon equation
    Rothos, Vassilis M.
    Feckan, Michal
    BILINEAR INTEGRABLE SYSTEMS: FROM CLASSICAL TO QUATUM, CONTINUOUS TO DISCRETE, 2006, 201 : 253 - +
  • [24] TRAVELLING WAVES IN A PERTURBED DISCRETE SINE-GORDON EQUATION
    Rothos, Vassilis M.
    NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS, 2005, 153 : 497 - 501
  • [25] MECHANICAL ANALOG STUDIES OF A PERTURBED SINE-GORDON EQUATION
    CIRILLO, M
    PARMENTIER, RD
    SAVO, B
    PHYSICA D, 1981, 3 (03): : 565 - 576
  • [26] Homoclinic breather-wave solutions for Sine-Gordon equation
    Dai, Zhengde
    Xian, Daquan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) : 3292 - 3295
  • [27] The sine-gordon equation perturbed in the nonlinear dynamics of DNA
    Salas, A. H.
    Castillo, J. E.
    REVISTA MEXICANA DE FISICA, 2012, 58 (06) : 481 - 487
  • [28] Existence of homoclinic tubes in the sine-Gordon equation with Hamiltonian perturbation
    Rothos, VM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (36): : 6409 - 6422
  • [29] Travelling waves in a singularly perturbed sine-Gordon equation
    Derks, G
    Doelman, A
    van Gils, SA
    Visser, T
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 180 (1-2) : 40 - 70
  • [30] METHOD FOR SOLVING SINE-GORDON EQUATION
    ABLOWITZ, MJ
    KAUP, DJ
    NEWELL, AC
    SEGUR, H
    PHYSICAL REVIEW LETTERS, 1973, 30 (25) : 1262 - 1264