Materials with negative Poisson's ratio: A qualitative microstructural model

被引:0
|
作者
Phan-Thien, N. [1 ]
Karihaloo, B.L. [1 ]
机构
[1] Univ of Sydney, New South Wales
来源
Journal of Applied Mechanics, Transactions ASME | 1994年 / 61卷 / 04期
关键词
Elasticity - Mathematical models - Microstructure - Random processes;
D O I
暂无
中图分类号
学科分类号
摘要
Materials with negative Poisson's ratio are peculiar in that they expand laterally when stretched. Examples of such type of behavior have been discovered with foams by Lakes (1987); however, it is only recently that isotropic materials with negative Poisson's ratio have been shown by Milton (1992) to exist within the framework of classical theory of elasticity. In this Note, we demonstrate qualitatively that a composite material with a reentrant microstructure can also have a negative Poisson's ratio, even though the composite may be isotropic owing to a completely random distribution of the microstructure.
引用
收藏
页码:1001 / 1004
相关论文
共 50 条
  • [21] Poisson's ratio for orthorhombic materials
    Universite Libre de Bruxelles, Brussels, Belgium
    J Elast, 1 (87-89):
  • [22] Poisson's Ratio for Orthorhombic Materials
    Ph. Boulanger
    M. Hayes
    Journal of Elasticity, 1998, 50 : 87 - 89
  • [23] Architecture of cylinders with implications for materials with negative Poisson ratio
    Pikhitsa, Peter V.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (03): : 1004 - 1007
  • [24] Poisson's ratio and modern materials
    Greaves, G. N.
    Greer, A. L.
    Lakes, R. S.
    Rouxel, T.
    NATURE MATERIALS, 2011, 10 (11) : 823 - 837
  • [25] Poisson's ratio and modern materials
    G. N. Greaves
    A. L. Greer
    R. S. Lakes
    T. Rouxel
    Nature Materials, 2011, 10 : 823 - 837
  • [26] Poisson's ratio for orthorhombic materials
    Boulanger, P
    Hayes, M
    JOURNAL OF ELASTICITY, 1998, 50 (01) : 87 - 89
  • [27] Poisson's ratio in cubic materials
    Norris, Andrew N.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2075): : 3385 - 3405
  • [28] Negative Poisson's ratio in a nonplanar phagraphene
    Openov, L. A.
    Podlivaev, A. I.
    PHYSICS OF THE SOLID STATE, 2017, 59 (06) : 1267 - 1269
  • [29] Negative Poisson's ratio polyethylene foams
    B. Brandel
    R. S. Lakes
    Journal of Materials Science, 2001, 36 : 5885 - 5893
  • [30] Negative Poisson's ratio in graphene oxide
    Wan, Jing
    Jiang, Jin-Wu
    Park, Harold S.
    NANOSCALE, 2017, 9 (11) : 4007 - 4012