Parallel solvers for nonlinear elliptic problems based on domain decomposition ideas

被引:0
|
作者
Johannes Kepler Univ Linz, Linz, Austria [1 ]
机构
来源
Parallel Comput | / 11卷 / 1527-1544期
关键词
* Corresponding author. Email: heise@numa.uni-linz.ac.at. This work is supported by the Austrian Fund - Fonds zur Fiirderung der wissenschaftlichen Forschung - under project P 11215-TEC. ’ Email: michael.jung@mathematik.k-chemnikde;
D O I
暂无
中图分类号
学科分类号
摘要
34
引用
收藏
相关论文
共 50 条
  • [21] Fast parallel solvers for symmetric boundary element domain decomposition equations
    Carstensen, C
    Kuhn, M
    Langer, U
    NUMERISCHE MATHEMATIK, 1998, 79 (03) : 321 - 347
  • [22] Fast parallel solvers for symmetric boundary element domain decomposition equations
    C. Carstensen
    M. Kuhn
    U. Langer
    Numerische Mathematik, 1998, 79 : 321 - 347
  • [23] DOMAIN DECOMPOSITION TECHNIQUES FOR THE PARALLEL SOLUTION OF NONSYMMETRIC SYSTEMS OF ELLIPTIC BOUNDARY-VALUE-PROBLEMS
    KEYES, DE
    GROPP, WD
    APPLIED NUMERICAL MATHEMATICS, 1990, 6 (04) : 281 - 301
  • [24] TOWARDS POLYALGORITHMIC LINEAR-SYSTEM SOLVERS FOR NONLINEAR ELLIPTIC PROBLEMS
    ERN, A
    GIOVANGIGLI, V
    KEYES, DE
    SMOOKE, MD
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (03): : 681 - 703
  • [25] A Nonlinear Domain Decomposition Technique for Scalar Elliptic PDEs
    Turner, James
    Kocvara, Michal
    Loghin, Daniel
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 869 - 877
  • [26] Domain decomposition based parallel solution techniques for plate bending problems
    Laemmer, L
    PARALLEL AND DISTRIBUTED PROCESSING FOR COMPUTATIONAL MECHANICS: SYSTEMS AND TOOLS, 1997, : 252 - 265
  • [27] A DOMAIN DECOMPOSITION ALGORITHM FOR ELLIPTIC PROBLEMS IN 3 DIMENSIONS
    SMITH, BF
    NUMERISCHE MATHEMATIK, 1991, 60 (02) : 219 - 234
  • [28] Scalable domain decomposition preconditioners for heterogeneous elliptic problems
    Jolivet, Pierre
    Hecht, Frederic
    Nataf, Frederic
    Prud'homme, Christophe
    SCIENTIFIC PROGRAMMING, 2014, 22 (02) : 157 - 171
  • [29] Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems
    Jolivet, Pierre
    Hecht, Frederic
    Nataf, Frederic
    Prud'homme, Christophe
    2013 INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC), 2013,
  • [30] Efficient contact solvers based on domain decomposition techniques
    Schöberl, J
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (8-9) : 1217 - 1228