Improving bounds for the number of correlation immune Boolean functions

被引:0
|
作者
Section 0710, Electronics and Telecom. Res. Inst., 161 Gajong-dong, Yusong-gu, Taejon, 305-350, Korea, Republic of [1 ]
不详 [2 ]
机构
来源
Inf. Process. Lett. | / 4卷 / 209-212期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Some cardinality estimates for the set of correlation-immune Boolean functions
    Karelina, Ekaterina K.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2022, 32 (02): : 91 - 96
  • [32] Relationship between algebraic immunity,correlation immune and propagation of Boolean functions
    Huang, Jinglian
    Wang, Zhuo
    Zhang, Chunling
    MECHATRONICS AND INDUSTRIAL INFORMATICS, PTS 1-4, 2013, 321-324 : 2649 - 2652
  • [33] On some algebraic and combinatorial properties of correlation-immune Boolean functions
    Alekseev, E. K.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2010, 20 (04): : 421 - 439
  • [34] The number of clique Boolean functions
    Pogosyan, G
    Miyakawa, M
    Nozaki, A
    Rosenberg, IG
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1997, E80A (08) : 1502 - 1507
  • [35] Number of clique Boolean functions
    Int Christian Univ, Mitaka-shi, Japan
    IEICE Trans Fund Electron Commun Comput Sci, 8 (1502-1507):
  • [36] On the number of bipolar Boolean functions
    Baumann, Ringo
    Strass, Hannes
    JOURNAL OF LOGIC AND COMPUTATION, 2017, 27 (08) : 2431 - 2449
  • [37] On the Number of Equivalence Classes of Boolean and Invertible Boolean Functions
    Zivkovic, Miodrag
    Caric, Marko
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (01) : 391 - 407
  • [38] On Correlation Properties of Boolean Functions
    Zhuo Zepeng
    Zhang Weiguo
    Gao Sheng
    Xiao Guozhen
    CHINESE JOURNAL OF ELECTRONICS, 2011, 20 (01): : 143 - 146
  • [39] The algebraic immunity and the optimal algebraic immunity functions of a class of correlation immune H Boolean functions
    Huang Jinglian
    Wang Zhuo
    INTERNATIONAL SEMINAR ON APPLIED PHYSICS, OPTOELECTRONICS AND PHOTONICS (APOP 2016), 2016, 61
  • [40] LOWER BOUNDS TO THE COMPLEXITY OF SYMMETRICAL BOOLEAN FUNCTIONS
    BABAI, L
    PUDLAK, P
    RODL, V
    SZEMEREDI, E
    THEORETICAL COMPUTER SCIENCE, 1990, 74 (03) : 313 - 323