A Legendre spectral Galerkin method for the biharmonic Dirichlet problem

被引:40
|
作者
Bialecki, B. [1 ]
Karageorghis, A. [1 ]
机构
[1] Dept. of Mathemical and Comp. Sci., Colorado School of Mines, Golden, CO 80401, United States
来源
| 2001年 / Society for Industrial and Applied Mathematics Publications卷 / 22期
关键词
D O I
10.1137/S1064827598342407
中图分类号
学科分类号
摘要
8
引用
收藏
相关论文
共 50 条
  • [41] Spectral gaps in the Dirichlet problem for the biharmonic operator on a plane periodically perforated by circular holes
    Bakharev F.L.
    Vestnik St. Petersburg University: Mathematics, 2013, 46 (2) : 76 - 84
  • [42] A spectral method for elliptic equations: the Dirichlet problem
    Atkinson, Kendall
    Chien, David
    Hansen, Olaf
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (02) : 169 - 189
  • [43] A spectral method for elliptic equations: the Dirichlet problem
    Kendall Atkinson
    David Chien
    Olaf Hansen
    Advances in Computational Mathematics, 2010, 33 : 169 - 189
  • [44] Legendre-Galerkin spectral approximation for a nonlocal elliptic Kirchhof-type problem
    Ren, Quanwei
    Tian, Hongjiong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (09) : 1747 - 1758
  • [45] Solving Nonlinear Filtering Problems in Real Time by Legendre Galerkin Spectral Method
    Dong, Wenhui
    Luo, Xue
    Yau, Stephen S-T
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1559 - 1572
  • [46] Galerkin-Legendre spectral method for the 3D Helmholtz equation
    Auteri, F
    Quartapelle, L
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 161 (02) : 454 - 483
  • [47] The Legendre Galerkin spectral element method for the generalized Rosenau-type equations
    Li, Shan
    Liu, Jing
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,
  • [48] Legendre spectral Galerkin method for second-kind Volterra integral equations
    Wan, Zhengsu
    Chen, Yanping
    Huang, Yunqing
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (01) : 181 - 193
  • [49] Legendre-tau-Galerkin and spectral collocation method for nonlinear evolution equations
    Qin, Yonghui
    Ma, Heping
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 52 - 65
  • [50] Legendre spectral Galerkin method for second-kind Volterra integral equations
    Zhengsu Wan
    Yanping Chen
    Yunqing Huang
    Frontiers of Mathematics in China, 2009, 4 : 181 - 193