On higher-order semi-explicit symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems

被引:0
|
作者
Reich, S.
机构
来源
Numerische Mathematik | / 76卷 / 02期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96
  • [32] Construction of symplectic (partitioned) Runge-Kutta methods with continuous stage
    Tang, Wensheng
    Lang, Guangming
    Luo, Xuqiong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 286 : 279 - 287
  • [33] Almost symplectic Runge-Kutta schemes for Hamiltonian systems
    Tan, XB
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) : 250 - 273
  • [34] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods Derived by Partitioned Runge-Kutta Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1181 - 1185
  • [35] RUNGE-KUTTA METHODS FOR LINEAR SEMI-EXPLICIT OPERATOR DIFFERENTIAL-ALGEBRAIC EQUATIONS
    Altmann, R.
    Zimmer, C.
    MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 149 - 174
  • [36] USE OF A SEMI-EXPLICIT RUNGE-KUTTA INTEGRATION ALGORITHM IN A SPECTROSCOPIC PROBLEM
    SCHAUMBURG, K
    WASNIEWSKI, J
    COMPUTERS & CHEMISTRY, 1978, 2 (01): : 19 - 24
  • [37] Numerical investigation of stochastic canonical Hamiltonian systems by high order stochastic partitioned Runge-Kutta methods
    Yang, Guoguo
    Li, Xuliang
    Ding, Xaiohua
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 94 (94):
  • [38] Symplectic Runge-Kutta methods for Hamiltonian systems driven by Gaussian rough paths
    Hong, Jialin
    Huang, Chuying
    Wang, Xu
    APPLIED NUMERICAL MATHEMATICS, 2018, 129 : 120 - 136
  • [39] ORDER PROPERTIES AND CONSTRUCTION OF SYMPLECTIC RUNGE-KUTTA METHODS
    Shou-fu Li (Institute for Computational and Applied Mathematics
    Journal of Computational Mathematics, 2000, (06) : 645 - 656
  • [40] Order properties and construction of symplectic Runge-Kutta methods
    Li, SF
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (06) : 645 - 656