Parameterized Newton method and a quasi-Newton method for nonsmooth equations

被引:0
|
作者
Chen, Xiaojun [1 ]
Qi, Liqun [1 ]
机构
[1] Univ of New South Wales, Kensington
关键词
Approximation theory - Convergence of numerical methods - Differential equations - Nonlinear equations - Nonlinear programming - Numerical analysis - Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a parameterized Newton method using generalized Jacobians and a Broyden-like method for solving nonsmooth equations. The former ensures that the method is well-defined even when the generalized Jacobian is singular. The latter is constructed by using an approximation function which can be formed for nonsmooth equations arising from partial differential equations and nonlinear complementarity problems. The approximation function method generalizes the splitting function method for nonsmooth equations. Locally superlinear convergence results are proved for the two methods. Numerical examples are given to compare the two methods with some other methods.
引用
收藏
页码:157 / 179
相关论文
共 50 条
  • [1] Inexact quasi-Newton global convergent method for solving constrained nonsmooth equations
    Smietanski, M. J.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (12) : 1757 - 1770
  • [2] Newton and quasi-Newton methods for a class of nonsmooth equations and related problems
    Sun, DF
    Han, JY
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) : 463 - 480
  • [3] A modified quasi-Newton method for nonlinear equations
    Fang, Xiaowei
    Ni, Qin
    Zeng, Meilan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 328 : 44 - 58
  • [4] A DIRECT SEARCH QUASI-NEWTON METHOD FOR NONSMOOTH UNCONSTRAINED OPTIMIZATION
    Price, C. J.
    [J]. ANZIAM JOURNAL, 2017, 59 (02): : 215 - 231
  • [5] A NONSMOOTH GLOBAL QUASI-NEWTON METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS
    Andres Arias, Carlos
    Jairo Martinez, Hector
    Perez, Rosana
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (01): : 1 - 15
  • [6] Quasi-newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martínez, A.
    Putti, M.
    [J]. Electronic Transactions on Numerical Analysis, 2006, 23 : 76 - 87
  • [7] Quasi-Newton preconditioners for the inexact Newton method
    Bergamaschi, L.
    Bru, R.
    Martinez, A.
    Putti, M.
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 23 : 76 - 87
  • [8] On superlinear convergence of quasi-Newton methods for nonsmooth equations
    Qi, LQ
    [J]. OPERATIONS RESEARCH LETTERS, 1997, 20 (05) : 223 - 228
  • [9] A Hybrid Semismooth Quasi-Newton Method for Structured Nonsmooth Operator Equations in Banach Spaces
    Mannel, Florian
    Rund, Armin
    [J]. JOURNAL OF CONVEX ANALYSIS, 2022, 29 (01) : 183 - 204
  • [10] QUASI-NEWTON METHOD WITH NO DERIVATIVES
    GREENSTADT, J
    [J]. MATHEMATICS OF COMPUTATION, 1972, 26 (117) : 145 - +