28-39 GHz distributed harmonic generation on a soliton nonlinear transmission line

被引:31
|
作者
Carman, Eric [1 ]
Giboney, Kirk [1 ]
Case, Michael [1 ]
Kamegawa, Masayuki [1 ]
Yu, Ruai [1 ]
Abe, Kathryn [1 ]
Rodwell, M.J.W. [1 ]
Franklin, Jeff [1 ]
机构
[1] Dept of Electr & Comput Eng,, Univ of California, Santa Barbara,, CA, USA
来源
关键词
Harmonic Generation - Millimiter Wave Distributed Frequency Multiplication - Monolithic Gallium Arsenide Devices - Nonlinear Transmission Lines - Schottky Diode Frequency Multipliers - Solitons;
D O I
10.1109/75.80703
中图分类号
学科分类号
摘要
A second-harmonic generation is reported in the 26-40-GHz band through soliton propagation on a GaAs monolithic nonlinear transmission line. At 20-dBm input power, a 20-diode structure attained <12-dB conversion loss for input frequencies from 13.5-18 GHz, with 9.3-dB minimum conversion loss, while a 10-diode structure attained <12-dB loss, 14-19.5 GHz (7.3-dB minimum). With reduction of conductor skin losses, broadband operation and peak conversion efficiencies approaching -3 dB are attainable.
引用
收藏
页码:28 / 31
相关论文
共 50 条
  • [31] Soliton-like Pulses along Electrical Nonlinear Transmission Line
    Sekulic, D. L.
    Sataric, M. V.
    Zivanov, M. B.
    Bajic, J. S.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 121 (05) : 53 - 58
  • [32] Soliton propagation and interaction on a two-dimensional nonlinear transmission line
    Dinkel, JN
    Setzer, C
    Rawal, S
    Lonngren, KE
    CHAOS SOLITONS & FRACTALS, 2001, 12 (01) : 91 - 96
  • [33] HIGH POWER SOLITON GENERATION USING HYBRID NONLINEAR TRANSMISSION LINES
    Silva Neto, L. P.
    Rossi, J. O.
    Barroso, J. J.
    Schamiloglu, E.
    2017 IEEE 21ST INTERNATIONAL CONFERENCE ON PULSED POWER (PPC), 2017,
  • [34] Dispersion decreasing fibres for soliton generation and transmission line loss compensation
    Richardson, DJ
    Chamberlain, RP
    Dong, L
    Payne, DN
    PHYSICS AND APPLICATIONS OF OPTICAL SOLITONS IN FIBRES '95, 1996, 3 : 277 - 291
  • [35] Transmission, reflection, and second-harmonic generation in a nonlinear waveguide
    Camassa, R
    Findikoglu, A
    Lythe, G
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 66 (01) : 1 - 28
  • [36] First Demonstration of 28 GHz and 39 GHz Transmission Lines and Antennas on Glass Substrates for 5G Modules
    Watanabe, Atom O.
    Ali, Muhammad
    Tehrani, Bijan
    Hester, Jimmy
    Raj, P. Markondeya
    Sundaram, Venky
    Tentzeris, Manos M.
    Tummala, Rao R.
    Matsuura, Hiroyuki
    Ogawa, Tomonori
    2017 IEEE 67TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2017), 2017, : 236 - 241
  • [37] Self-consistent nonlinear computation of a 28GHz gyrotron at the second harmonic
    Cao, XQ
    Liu, PK
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2005, 24 (04) : 317 - 320
  • [38] Soliton and soliton-like solutions to the modified Zakharov-Kuznetsov equation in nonlinear transmission line
    Zhou, Qin
    NONLINEAR DYNAMICS, 2016, 83 (03) : 1429 - 1435
  • [39] Design of Coupling Transmission Line for 28 GHz Band RF Optical Transmitter
    Tanaka, Satoshi
    Aiba, Takamitsu
    Yasuda, Hiroki
    Suzuki, Toshinori
    Wakabayashi, Tomohiro
    2020 INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS (MWP 2020), 2020, : 159 - 161
  • [40] An 8.3% Efficiency 96-134 GHz CMOS Frequency Doubler Using Distributed Amplifier and Nonlinear Transmission Line
    Hao, Shilei
    Tang, Yi-Wu
    Ding, Xuan
    Du, Li
    Du, Yuan
    Tang, Adrian
    Gu, Qun Jane
    Chang, Mau-Chung F.
    2020 IEEE ASIAN SOLID-STATE CIRCUITS CONFERENCE (A-SSCC), 2020,