Nonlinear constraints and soliton solutions of 1+2-dimensional three-wave equation

被引:0
|
作者
Zhou, Z.
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Soliton solutions for a (3+1)-dimensional nonlinear integrable equation
    Wang, Shaofu
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (13)
  • [32] Deformation characteristics of three-wave solutions and lump N-solitons to the (2+1)-dimensional generalized KdV equation
    Dai, Hou-Ping
    Tan, Wei
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02):
  • [33] New families of soliton solutions for the (2 + 1)-dimensional nonlinear evolution equation arising in nonlinear optics
    Ali K.K.
    Omri M.
    Mehanna M.S.
    Besbes H.
    Abdel-Aty A.-H.
    Alexandria Engineering Journal, 2023, 68 : 733 - 745
  • [34] Exact solutions and optical soliton solutions for the (2+1)-dimensional hyperbolic nonlinear Schrodinger equation
    Zayed, E. M. E.
    Al-Nowehy, Abdul-Ghani
    OPTIK, 2016, 127 (12): : 4970 - 4983
  • [35] Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation
    Wang Jun-Min
    CHINESE PHYSICS LETTERS, 2012, 29 (02)
  • [36] Novel soliton solutions for the fractional three-wave resonant interaction equations
    Alqaraleh, Sahar M.
    Talafha, Adeeb G.
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 490 - 505
  • [37] Exact three-wave solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
    Ma, Hongcai
    Bai, Yongbin
    Deng, Aiping
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [38] Exact three-wave solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
    Hongcai Ma
    Yongbin Bai
    Aiping Deng
    Advances in Difference Equations, 2013
  • [39] New three-wave solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
    Liu, Jian-Guo
    Du, Jian-Qiang
    Zeng, Zhi-Fang
    Nie, Bin
    NONLINEAR DYNAMICS, 2017, 88 (01) : 655 - 661
  • [40] Mechanisms of nonlinear wave transitions in the (2+1)-dimensional generalized breaking soliton equation
    Fu-Fu Ge
    Shou-Fu Tian
    Nonlinear Dynamics, 2021, 105 : 1753 - 1764