Reduction of the curvature of a class of nonlinear regression models

被引:0
|
作者
Wu, Yi
Yi, Dongyun
机构
来源
| 2000年 / Gordon & Breach Science Publ Inc, Newark, NJ, USA卷 / 43期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
It is proved that the curvature of nonlinear model can be reduced to zero by increasing measured data for a class of nonlinear regression models. The result is important to actual problem and has obtained satisfying effect on data fusing.
引用
收藏
相关论文
共 50 条
  • [31] Relative Curvature Measure for Heteroscedastic or Non Normal Nonlinear Regression
    Daimon, Takashi
    Yoshikawa, Toshihiro
    Kobayashi, Tominori
    Goto, Masashi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (02) : 193 - 207
  • [32] Estimation Methods of Nonlinear Regression Models
    Donthi, Ranadheer
    Prasad, S. Vijay
    Mahaboob, B.
    Praveen, J. Peter
    Venkateswarlu, B.
    RECENT TRENDS IN PURE AND APPLIED MATHEMATICS, 2019, 2177
  • [33] Testing for heteroscedasticity in nonlinear regression models
    Lin, JG
    Wei, BC
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (01) : 171 - 192
  • [34] Robust tests in nonlinear regression models
    Markatou, M
    Manos, G
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 55 (02) : 205 - 217
  • [35] Recycled estimates for nonlinear regression models
    Zhang, Yue
    Boukai, Ben
    STAT, 2019, 8 (01):
  • [36] EMBEDDED MODELS IN NONLINEAR-REGRESSION
    CHENG, RCH
    EVANS, BE
    ILES, TC
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1992, 54 (03): : 877 - 888
  • [37] On additive perturbations in nonlinear regression models
    Potocky, R
    Ban, TV
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 17, 1998, : 65 - 70
  • [38] ON CONCURVITY IN NONLINEAR AND NONPARAMETRIC REGRESSION MODELS
    Amodio, Sonia
    Aria, Massimo
    D'Ambrosio, Antonio
    STATISTICA, 2014, 74 (01) : 85 - 98
  • [39] Robust inference for nonlinear regression models
    Bianco, Ana M.
    Spano, Paula M.
    TEST, 2019, 28 (02) : 369 - 398
  • [40] Model Averaging for Nonlinear Regression Models
    Feng, Yang
    Liu, Qingfeng
    Yao, Qingsong
    Zhao, Guoqing
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (02) : 785 - 798