Fractal sets in control systems

被引:0
|
作者
Cheng, Daizhan [1 ]
机构
[1] Inst of Systems Science, Academia Sinica, Beijing, China
关键词
6;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:735 / 744
相关论文
共 50 条
  • [21] Control sets for bilinear and affine systems
    Fritz Colonius
    Alexandre J. Santana
    Juliana Setti
    Mathematics of Control, Signals, and Systems, 2022, 34 : 1 - 35
  • [22] Strong chain control sets and affine control systems
    Colonius, Fritz
    Santana, Alexandre J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 424 : 760 - 791
  • [23] CONTROL SYSTEMS ON FLAG MANIFOLDS AND THEIR CHAIN CONTROL SETS
    Ayala, Victor
    Da Silva, Adriano
    San Martin, Luiz A. B.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (05) : 2301 - 2313
  • [24] Fractal Schrödinger equation: implications for fractal sets
    Golmankhaneh, Alireza Khalili
    Pellis, Stergios
    Zingales, Massimiliano
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (18)
  • [25] Approximation of fractal sets by Julia set attractors of polynomial iterated function systems
    Melnikov, AV
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1999, 7 (01) : 41 - 49
  • [26] Tsallis entropy on fractal sets
    Golmankhaneh, Alireza Khalili
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2021, 15 (01): : 543 - 549
  • [27] Harmonic measure on fractal sets
    Beliaev, D
    Smirnov, S
    European Congress of Mathematics, 2005, : 41 - 59
  • [28] Diffusion in a class of fractal sets
    Datta, D.P. (dp_datta@yahoo.com), 1600, CESER Publications, Post Box No. 113, Roorkee, 247667, India (30):
  • [29] Spectal dimension of fractal sets
    Wilkinson, M.
    Kennard, H. R.
    Morgan, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (41)
  • [30] VANISHING VISCOSITY FOR FRACTAL SETS
    Mosco, Umberto
    Vivaldi, Maria Agostina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (03) : 1207 - 1235