The Structure of Poisson Algebras

被引:0
|
作者
Ringwood, G.A. [1 ]
机构
[1] Department of Statistics, Birkbeck College, London, United Kingdom
关键词
The author is grateful to E. K. Kronheimer; P; Holgate; and the referees for suggestions which have led to improvements in the paper. This work was carried out under SERC contract GR/B70827;
D O I
10.1093/imammb/2.1.69
中图分类号
学科分类号
摘要
5
引用
收藏
页码:69 / 73
相关论文
共 50 条
  • [1] Symplectic ideals of Poisson algebras and the Poisson structure associated to quantum matrices
    Oh, SQ
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (05) : 2163 - 2180
  • [2] Poincaré duality for smooth Poisson algebras and BV structure on Poisson cohomology
    Luo, J.
    Wang, S. -Q.
    Wu, Q. -S.
    JOURNAL OF ALGEBRA, 2024, 649 : 169 - 211
  • [3] Structure of BiHom-pre-Poisson algebras
    Aloulou, Walid
    Jebli, Mansour
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2024, 28 (02): : 149 - 173
  • [4] Lie structure of truncated symmetric Poisson algebras
    Alves, Ilana Z. Monteiro
    Petrogradsky, Victor
    JOURNAL OF ALGEBRA, 2017, 488 : 244 - 281
  • [5] Polynomial Poisson algebras with regular structure of symplectic leaves
    Odesskii, AV
    Rubtsov, VN
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 133 (01) : 1321 - 1337
  • [6] Polynomial Poisson Algebras with Regular Structure of Symplectic Leaves
    A. V. Odesskii
    V. N. Rubtsov
    Theoretical and Mathematical Physics, 2002, 133 : 1321 - 1337
  • [7] On the structure of split non-commutative Poisson algebras
    Calderon Martin, Antonio J.
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (07): : 775 - 785
  • [8] THE STRUCTURE OF SPLIT REGULAR HOM-POISSON ALGEBRAS
    Aragon Perinan, Maria J.
    Calderon Martin, Antonio J.
    COLLOQUIUM MATHEMATICUM, 2016, 145 (01) : 1 - 13
  • [9] POISSON ALGEBRAS
    BRACONNIER, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (21): : 1345 - 1348
  • [10] SYMPLECTIC ALGEBRAS AND POISSON ALGEBRAS
    LOOSE, F
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (07) : 2395 - 2416