Lie structure of truncated symmetric Poisson algebras

被引:9
|
作者
Alves, Ilana Z. Monteiro [1 ]
Petrogradsky, Victor [2 ]
机构
[1] Univ Fed Amazonas, Dept Math, Humaita, Amazonas, Brazil
[2] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
关键词
Poisson algebras; Identical relations; Solvable Lie algebras; Nilpotent Lie algebras; Symmetric algebras; Truncated symmetric algebras; Restricted Lie algebras; RESTRICTED ENVELOPING-ALGEBRAS; NILPOTENT ASSOCIATIVE ALGEBRAS; POLYNOMIAL-IDENTITIES; GROUP-RINGS; SMASH PRODUCTS; SUPERALGEBRAS; INDEXES; IDEALS;
D O I
10.1016/j.jalgebra.2017.05.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper naturally continues series of works on identical relations of group rings, enveloping algebras, and other related algebraic structures. Let L be a Lie algebra over a field of characteristic p > 0. Consider its symmetric algebra S(L) = circle plus U-infinity(n=0)n/Un-1, which is isomorphic to a polynomial ring. It also has a structure of a Poisson algebra, where the Lie product is traditionally denoted by{ , }. This bracket naturally induces the structure of a Poisson algebra on the ring s(L) = S(L)/(x(p) vertical bar x is an element of L), which we call a truncated symmetric Poisson algebra. We study Lie identical relations of s(L). Namely, we determine necessary and sufficient conditions for L under which s(L) is Lie nilpotent, strongly Lie nilpotent, solvable and strongly solvable, where we assume that p > 2 to specify the solvability. We compute the strong Lie nilpotency class of s(L). Also, we prove that the Lie nilpotency class coincides with the strong Lie nilpotency class in case p > 3. Shestakov proved that the symmetric algebra S(L) of an arbitrary Lie algebra L satisfies the identity {x, {y, z}} equivalent to 0 if, and only if, L is abelian. We extend this result for the (strong) Lie nilpotency and the (strong) solvability of S(L). We show that the solvability of s(L) and S(L) in case char K = 2 is different from other characteristics, namely, we construct
引用
收藏
页码:244 / 281
页数:38
相关论文
共 50 条
  • [1] Poisson algebras and symmetric Leibniz bialgebra structures on oscillator Lie algebras
    Albuquerque, H.
    Barreiro, E.
    Benayadi, S.
    Boucetta, M.
    Sanchez, J. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 160
  • [2] A Poisson basis theorem for symmetric algebras of infinite-dimensional Lie algebras
    Sanchez, Omar Leon
    Sierra, Susan J.
    ARKIV FOR MATEMATIK, 2023, 61 (02): : 375 - 412
  • [3] On the structure of symmetric self-dual Lie algebras
    FigueroaOFarrill, JM
    Stanciu, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (08) : 4121 - 4134
  • [4] On Lie Algebroids and Poisson Algebras
    Garcia-Beltran, Dennise
    Vallejo, Jose A.
    Vorobjev, Yurii
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [5] THE LIE-STRUCTURE OF C-STAR AND POISSON ALGEBRAS
    GRABOWSKI, J
    STUDIA MATHEMATICA, 1985, 81 (03) : 259 - 270
  • [6] POISSON STRUCTURE ON SYMMETRIC ALGEBRA OF NILPOTENT LIE-ALGEBRA
    VERGNE, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1972, 100 (03): : 301 - &
  • [7] DEFORMATIONS OF TRUNCATED LIE-ALGEBRAS
    BOYOM, N
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (12): : 859 - 862
  • [8] Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras
    Bai, Chengming
    Bai, Ruipu
    Guo, Li
    Wu, Yong
    JOURNAL OF ALGEBRA, 2023, 632 : 535 - 566
  • [9] SYMMETRIC LIE-ALGEBRAS
    WINTER, DJ
    JOURNAL OF ALGEBRA, 1985, 97 (01) : 130 - 165