k-Steiner-minimal-trees in metric spaces

被引:0
|
作者
Cieslik, D.
机构
来源
Discrete Mathematics | 1999年 / 208-209卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:119 / 124
相关论文
共 50 条
  • [41] Steiner Minimal Trees with One Polygonal Obstacle
    J. F. Weng
    J. MacGregor Smith
    Algorithmica, 2001, 29 : 638 - 648
  • [42] A CLASS OF FULL STEINER MINIMAL-TREES
    HWANG, FK
    WENG, JF
    DU, DZ
    DISCRETE MATHEMATICS, 1983, 45 (01) : 107 - 112
  • [43] The Steiner k-eccentricity on trees
    Li, Xingfu
    Yu, Guihai
    Klavzar, Sandi
    Hu, Jie
    Li, Bo
    THEORETICAL COMPUTER SCIENCE, 2021, 889 : 182 - 188
  • [44] Minimal widths of metric spaces
    Ismagilov, RS
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1999, 33 (04) : 270 - 279
  • [45] Minimal widths of metric spaces
    R. S. Ismagilov
    Functional Analysis and Its Applications, 1999, 33 : 270 - 279
  • [46] MINIMAL UNIVERSAL METRIC SPACES
    Bilet, Victoriia
    Dovgoshey, Oleksiy
    Kucukaslan, Mehmet
    Petrov, Evgenii
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 1019 - 1064
  • [47] The structure of minimal Steiner trees in the neighborhoods of the lunes of their edges
    Ivanov, A. O.
    Sedina, O. A.
    Tuzhilin, A. A.
    MATHEMATICAL NOTES, 2012, 91 (3-4) : 339 - 353
  • [48] Improved computation of optimal rectilinear Steiner minimal trees
    Ganley, JL
    Cohoon, JP
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1997, 7 (05) : 457 - 472
  • [49] HEXAGONAL COORDINATE SYSTEMS AND STEINER MINIMAL-TREES
    HWANG, FK
    WENG, JF
    DISCRETE MATHEMATICS, 1986, 62 (01) : 49 - 57
  • [50] Uniqueness of Steiner minimal trees on boundaries in general position
    Ivanov, A. O.
    Tuzhilin, A. A.
    SBORNIK MATHEMATICS, 2006, 197 (9-10) : 1309 - 1340