Numerical relativity in 3+1 dimensions

被引:0
|
作者
Brügmann, B. [1 ]
机构
[1] Max-Planck-Inst. fur G., Am Mühlenberg 1, D-14476 Golm, Germany
来源
Annalen der Physik (Leipzig) | 2000年 / 9卷 / 03期
关键词
Problem solving - Quantum theory - Relativity;
D O I
暂无
中图分类号
学科分类号
摘要
Numerical relativity is finally approaching a state where the evolution of rather general (3+1)-dimensional data set can be computed in order to solve the Einstein equations. Three topics of current interest are reviewed: binary black hole mergers, the evolution of strong gravitational waves, and shift conditions for neuron star binaries.
引用
下载
收藏
页码:227 / 246
相关论文
共 50 条
  • [41] Discrete skyrmions in 2+1 and 3+1 dimensions
    Ioannidou, Theodora
    Kevrekidis, P. G.
    PHYSICS LETTERS A, 2008, 372 (45) : 6735 - 6741
  • [42] QUANTUM COSMOLOGY IN 2+1 AND 3+1 DIMENSIONS
    BANKS, T
    FISCHLER, W
    SUSSKIND, L
    NUCLEAR PHYSICS B, 1985, 262 (01) : 159 - 186
  • [43] Nonlinear evolution of quadratic gravity in 3+1 dimensions
    Held, Aaron
    Lim, Hyun
    PHYSICAL REVIEW D, 2023, 108 (10)
  • [44] Entanglement across a cubic interface in 3+1 dimensions
    Devakul, Trithep
    Singh, Rajiv R. P.
    PHYSICAL REVIEW B, 2014, 90 (05)
  • [45] Why do we live in 3+1 dimensions?
    Durrer, R
    Kunz, M
    Sakellariadou, M
    PHYSICS LETTERS B, 2005, 614 (3-4) : 125 - 130
  • [46] Fermion-fermion duality in 3+1 dimensions
    Palumbo, Giandomenico
    ANNALS OF PHYSICS, 2020, 419
  • [47] Dilatonic topological defects in 3+1 dimensions and their embeddings
    Platis, Nikos
    Antoniou, Ioannis
    Perivolaropoulos, Leandros
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [48] SCALAR FIELD-THEORY IN 3+1 DIMENSIONS
    KONIUK, R
    TARRACH, R
    PHYSICAL REVIEW D, 1985, 31 (12): : 3178 - 3182
  • [49] Holographic description of boundary gravitons in (3+1) dimensions
    Seth K. Asante
    Bianca Dittrich
    Hal M. Haggard
    Journal of High Energy Physics, 2019
  • [50] Holographic description of boundary gravitons in (3+1) dimensions
    Asante, Seth K.
    Dittrich, Bianca
    Haggard, Hal M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)