Polyhedral intersection theorem for capacitated spanning trees

被引:0
|
作者
Hall, Leslie A.
Magnanti, Thomas L.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] INTERSECTION THEOREM
    SMITH, PF
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1970, 21 (NOV) : 385 - &
  • [32] THE INTERSECTION THEOREM
    ROBERTS, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (07): : 177 - 180
  • [33] TREES IN POLYHEDRAL GRAPHS
    BARNETTE, D
    CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (04): : 731 - &
  • [34] Vertex covering with capacitated trees
    Borndoerfer, Ralf
    Schwartz, Stephan
    Surau, William
    NETWORKS, 2023, 81 (02) : 253 - 277
  • [35] From Spanning Trees to Meshed Trees
    Acharya, H. B.
    Hamilton, John
    Shenoy, Nirmala
    2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [36] RAMP for the capacitated minimum spanning tree problem
    Rego, Cesar
    Mathew, Frank
    Glover, Fred
    ANNALS OF OPERATIONS RESEARCH, 2010, 181 (01) : 661 - 681
  • [37] Centrality of trees for capacitated -center
    An, Hyung-Chan
    Bhaskara, Aditya
    Chekuri, Chandra
    Gupta, Shalmoli
    Madan, Vivek
    Svensson, Ola
    MATHEMATICAL PROGRAMMING, 2015, 154 (1-2) : 29 - 53
  • [38] Scatter search for capacitated minimum spanning tree
    Rego, Cesar
    Mathew, Frank
    ADVANCES IN ENGINEERING SOFTWARE, 2023, 186
  • [39] Optimal capacitated ring trees
    Hill, Alessandro
    Voss, Stefan
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2016, 4 (02) : 137 - 166
  • [40] The (K, k)-capacitated spanning tree problem
    Arkin, Esther M.
    Guttmann-Beck, Nili
    Hassin, Refael
    DISCRETE OPTIMIZATION, 2012, 9 (04) : 258 - 266