RECTILINEAR SHORTEST PATHS AND MINIMUM SPANNING TREES IN THE PRESENCE OF RECTILINEAR OBSTACLES.

被引:0
|
作者
Wu, Ying-Fung [1 ]
Widmayer, Peter [1 ]
Schlag, Martine D.F. [1 ]
Wong, C.K. [1 ]
机构
[1] Northwestern Univ, Evanston, IL, USA, Northwestern Univ, Evanston, IL, USA
关键词
D O I
暂无
中图分类号
学科分类号
摘要
26
引用
收藏
页码:321 / 331
相关论文
共 50 条
  • [21] An Optimal Algorithm for Minimum-Link Rectilinear Paths in Triangulated Rectilinear Domains
    Mitchell, Joseph S. B.
    Polishchuk, Valentin
    Sysikaski, Mikko
    Wang, Haitao
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 947 - 959
  • [22] An Optimal Algorithm for Minimum-Link Rectilinear Paths in Triangulated Rectilinear Domains
    Mitchell, Joseph S. B.
    Polishchuk, Valentin
    Sysikaski, Mikko
    Wang, Haitao
    ALGORITHMICA, 2019, 81 (01) : 289 - 316
  • [23] Trans-dichotomous algorithms for minimum spanning trees and shortest paths
    Fredman, Michael L., 1600, Academic Press Inc, San Diego, CA, United States (48):
  • [24] Shortest path queries among weighted obstacles in the rectilinear plane
    Chen, DZ
    Klenk, KS
    Tu, HYT
    SIAM JOURNAL ON COMPUTING, 2000, 29 (04) : 1223 - 1246
  • [25] Approximation of rectilinear Steiner trees with length restrictions on obstacles
    Müller-Hannemann, M
    Peyer, S
    ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2003, 2748 : 207 - 218
  • [26] AN OPTIMAL ALGORITHM FOR RECTILINEAR STEINER TREES FOR CHANNELS WITH OBSTACLES
    CHIANG, C
    SARRAFZADEH, M
    WONG, CK
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1991, 19 (06) : 551 - 563
  • [27] AN ALGORITHM FOR EXACT RECTILINEAR STEINER TREES FOR SWITCHBOX WITH OBSTACLES
    CHIANG, C
    SARRAFZADEH, M
    WONG, CK
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1992, 39 (06): : 446 - 455
  • [28] Shortest non-crossing rectilinear paths in plane regions
    Takahashi, J
    Suzuki, H
    Nishizeki, T
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1997, 7 (05) : 419 - 436
  • [29] A polynomial time approximation scheme for rectilinear Steiner minimum tree construction in the presence of obstacles
    Jian, L
    Ying, Z
    Shragowitz, E
    Karypis, G
    ICES 2002: 9TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-111, CONFERENCE PROCEEDINGS, 2002, : 781 - 784
  • [30] An efficient direct approach for computing shortest rectilinear paths among obstacles in a two-layer interconnection model
    Chen, DZ
    Xu, JH
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 18 (03): : 155 - 166