Inverse mode problem for the continuous model of an axially vibrating rod

被引:0
|
作者
Ram, Y.M. [1 ]
机构
[1] Univ of Adelaide, Adelaide
来源
关键词
Axially vibrating rod - Inverse mode problem - Youngs modulus of elasticity;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:624 / 628
相关论文
共 50 条
  • [41] An inverse problem in coupled mode theory
    Sacks, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (04) : 1699 - 1710
  • [42] Constructing the axial stiffness of longitudinally vibrating rod from fundamental mode shape
    Candan, S
    Elishakoff, I
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (19) : 3443 - 3452
  • [43] Inverse problem-coupled heat transfer model for steel continuous casting
    Wang, Zhaofeng
    Yao, Man
    Wang, Xudong
    Zhang, Xiaobing
    Yang, Longsheng
    Lu, Hongzhou
    Wang, Xiong
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (01) : 44 - 49
  • [44] A modulus gradient model for an axially loaded inhomogeneous elastic rod
    Gulasuk, Hasan
    Goktepe, Serdar
    Gurses, Ercan
    MECCANICA, 2018, 53 (10) : 2573 - 2584
  • [45] Inverse Mode Problem in the Discrete Model of Circular Plate Axial Symmetry Vibration
    Wang Qi-Shen
    Wang Yang
    Zhang Li-Hua
    MECHANICAL ENGINEERING AND GREEN MANUFACTURING, PTS 1 AND 2, 2010, : 71 - +
  • [46] A modulus gradient model for an axially loaded inhomogeneous elastic rod
    Hasan Gülaşık
    Serdar Göktepe
    Ercan Gürses
    Meccanica, 2018, 53 : 2573 - 2584
  • [47] An inverse spectral problem for the Euler-Bernoulli equation for the vibrating beam
    Papanicolaou, VG
    Kravvaritis, D
    INVERSE PROBLEMS, 1997, 13 (04) : 1083 - 1092
  • [48] Nonlinear vibrations and mode interactions for a continuous rod with microstructure
    Andrianov, Igor V.
    Danishevskyy, Vladyslav V.
    Markert, Bernd
    JOURNAL OF SOUND AND VIBRATION, 2015, 351 : 268 - 281
  • [49] INVERSE PROBLEM FOR THE STRING OR ROD CLAMPED AT BOTH SIDES.
    Ueda, Sei
    Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1988, 54 (500): : 638 - 641
  • [50] On the solvability of an inverse boundary problem for the equation of transverse oscillation of the rod
    Huntul, M. J.
    Ramazanova, Asel T.
    Mehraliyev, Yashar T.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (18) : 14629 - 14638