Generalized structure of Lax representations for nonlinear evolution equation

被引:0
|
作者
Fudan Univ, Shanghai, China [1 ]
机构
来源
Appl Math Mech Engl Ed | / 7卷 / 671-677期
关键词
Number:; -; Acronym:; Sponsor: Natural Science Foundation of Shanghai;
D O I
暂无
中图分类号
学科分类号
摘要
(Edited Abstract)
引用
收藏
相关论文
共 50 条
  • [31] On Generalized Nonlinear Burgers' Equation
    Bokhari, Ashfaque H.
    Kara, A. H.
    Abdulwahab, M.
    Zaman, F. D.
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 23 (03): : 281 - 289
  • [32] On a generalized nonlinear functional equation
    Berg, Lothar
    Stevic, Stevo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (10) : 3305 - 3310
  • [33] Generalized Lax-Friedrichs Schemes for Linear Advection Equation with Damping
    Wu, Yun
    Jiang, Hai-xin
    Tong, Wei
    INFORMATION COMPUTING AND APPLICATIONS, 2011, 7030 : 305 - 312
  • [34] Extensions of the symmetry algebra and Lax representations for the two-dimensional Euler equation
    Morozov, Oleg I.
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 202
  • [35] Unimodal solutions of the generalized Constantin-Lax-Majda equation with viscosity
    Kim, Sun-Chul
    Miyaji, Tomoyuki
    Okamoto, Hisashi
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (03) : 1065 - 1083
  • [36] Generalized Lax-Friedrichs Scheme for Convective-Diffusion Equation
    Tong, Wei
    Wu, Yun
    INFORMATION COMPUTING AND APPLICATIONS, PT 1, 2012, 307 : 321 - 328
  • [37] The Lax pair structure for the spin Benjamin–Ono equation
    Patrick Gérard
    Advances in Continuous and Discrete Models, 2023
  • [38] Evolution of optical solitary waves in a generalized nonlinear Schrodinger equation with variable coefficients
    Wu, Xiao-Fei
    Hua, Guo-Sheng
    Ma, Zheng-Yi
    NONLINEAR DYNAMICS, 2012, 70 (03) : 2259 - 2267
  • [39] INTEGRAL REPRESENTATIONS OF SOLUTIONS OF GENERALIZED HEAT EQUATION
    HAIMO, DT
    CHOLEWIN.FM
    ILLINOIS JOURNAL OF MATHEMATICS, 1966, 10 (04) : 623 - &
  • [40] GENERALIZED BOUSSINESQ EQUATION AND KDV EQUATION - PAINLEVE PROPERTIES, BACKLUND-TRANSFORMATIONS AND LAX PAIRS
    LOU, SY
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1991, 34 (09): : 1098 - 1108