Adiabatic Reduction of Dimensionality and the Method of Similar Additive Noise in Nonlinear Stochastic Dynamics

被引:0
|
作者
Lyakhov, G. A.
Popyrin, S. L.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Spectral collocation method for stochastic Burgers equation driven by additive noise
    Kamrani, Minoo
    Hosseini, S. Mohammad
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (09) : 1630 - 1644
  • [32] AN OPTIMIZED METHOD OF KERNEL MINIMUM NOISE FRACTION FOR DIMENSIONALITY REDUCTION OF HYPERSPECTRAL IMAGERY
    Zhao, Bin
    Gao, Lianru
    Zhang, Bing
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 48 - 51
  • [33] ONLINE MULTISCALE MODEL REDUCTION FOR NONLINEAR STOCHASTIC PDES WITH MULTIPLICATIVE NOISE
    Jiang, Lijian
    LI, Mengnan
    Zhao, Meng
    MULTISCALE MODELING & SIMULATION, 2022, 20 (03): : 1063 - 1092
  • [34] Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics
    Chorin, Alexandre J.
    Lu, Fei
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (32) : 9804 - 9809
  • [35] Research on dimensionality reduction method of a high-dimensional nonlinear gear dynamics model and its dynamic characteristic analysis
    Li, Zhibin
    Zheng, Jinde
    Wang, Sanmin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART K-JOURNAL OF MULTI-BODY DYNAMICS, 2025,
  • [36] Investigation of nonlinear dynamics in the stochastic nonlinear Schrödinger equation with spatial noise intensity
    Shakeel, Muhammad
    Liu, Xinge
    Abbas, Naseem
    NONLINEAR DYNAMICS, 2025, 113 (08) : 8951 - 8971
  • [37] EXTREMELY SIMPLE NONLINEAR NOISE-REDUCTION METHOD
    SCHREIBER, T
    PHYSICAL REVIEW E, 1993, 47 (04): : 2401 - 2404
  • [38] Potential landscape of high dimensional nonlinear stochastic dynamics with large noise
    Ying Tang
    Ruoshi Yuan
    Gaowei Wang
    Xiaomei Zhu
    Ping Ao
    Scientific Reports, 7
  • [39] Dynamics of stochastic Ginzburg-Landau equations driven by nonlinear noise
    Shu, Ji
    Zhang, Lu
    Huang, Xin
    Zhang, Jian
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2022, 37 (03): : 382 - 402
  • [40] Potential landscape of high dimensional nonlinear stochastic dynamics with large noise
    Tang, Ying
    Yuan, Ruoshi
    Wang, Gaowei
    Zhu, Xiaomei
    Ao, Ping
    SCIENTIFIC REPORTS, 2017, 7