Assimilating coherent Doppler lidar measurements into a model of the atmospheric boundary layer. Part I: Algorithm development and sensitivity to measurement error

被引:0
|
作者
Newsom, Rob K. [1 ]
Banta, Robert M. [2 ]
机构
[1] Coop. Inst. for Res. the Atmosphere, Colorado State University, Fort Collins, CO, United States
[2] NOAA, Environmental Technology Laboratory, Boulder, CO, United States
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1328 / 1345
相关论文
共 50 条
  • [41] Accuracy of estimation of the turbulent energy dissipation rate from wind measurements with a conically scanning pulsed coherent Doppler lidar. Part I. Algorithm of data processing
    Smalikho I.N.
    Banakh V.A.
    [J]. Atmospheric and Oceanic Optics, 2013, 26 (5) : 404 - 410
  • [42] Interaction between the atmospheric boundary layer and a standalone wind turbine in Gansu-Part I: Field measurement
    Li, DeShun
    Guo, Tao
    Li, YinRan
    Hu, JinSen
    Zheng, Zhi
    Li, Ye
    Di, YuJia
    Hu, WenRui
    Li, RenNian
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (09)
  • [43] Long-range Doppler lidar measurements of wind turbine wakes and their interaction with turbulent atmospheric boundary-layer flow at Perdigao 2017
    Wildmann, Norman
    Gerz, Thomas
    Lundquist, Julie K.
    [J]. SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618
  • [44] Accuracy of estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidars
    Banakh, Viktor
    Smalikho, Igor
    [J]. 23RD INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2017, 10466
  • [45] Angstrom coefficient as an indicator of the atmospheric aerosol type for a well-mixed atmospheric boundary layer: Part 1: Model development
    Kusmierczyk-Michulec, Jolanta
    [J]. OCEANOLOGIA, 2009, 51 (01) : 5 - 38
  • [46] PIV measurements in the atmospheric boundary layer within and above a mature corn canopy. Part I: Statistics and energy flux
    van Hout, R.
    Zhu, W.
    Luznik, L.
    Katz, J.
    Kleissl, J.
    Parlange, M. B.
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2007, 64 (08) : 2805 - 2824
  • [47] Atmospheric measurements at Mt. Tai - Part I: HONO formation and its role in the oxidizing capacity of the upper boundary layer
    Xue, Chaoyang
    Ye, Can
    Kleffmann, Jorg
    Zhang, Chenglong
    Catoire, Valery
    Bao, Fengxia
    Mellouki, Abdelwahid
    Xue, Likun
    Chen, Jianmin
    Lu, Keding
    Zhao, Yong
    Liu, Hengde
    Guo, Zhaoxin
    Mu, Yujing
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (05) : 3149 - 3167
  • [48] Integration of Error Compensation of Coordinate Measuring Machines into Feature Measurement: Part I-Model Development
    Calvo, Roque
    D'Amato, Roberto
    Gomez, Emilio
    Domingo, Rosario
    [J]. SENSORS, 2016, 16 (10)
  • [49] Accuracy of estimation of the turbulent energy dissipation rate from wind measurements with a conically scanning pulsed coherent Doppler lidar. Part II. Numerical and atmospheric experiments
    Smalikho I.N.
    Banakh V.A.
    Pichugina E.L.
    Brewer A.
    [J]. Atmospheric and Oceanic Optics, 2013, 26 (5) : 411 - 416
  • [50] A PDF micromixing model of dispersion for atmospheric flow. Part 1: development of the model, application to homogeneous turbulence and to neutral boundary layer
    Cassiani, M
    Franzese, P
    Giostra, U
    [J]. ATMOSPHERIC ENVIRONMENT, 2005, 39 (08) : 1457 - 1469