Microstructural evolution in a 17-4 PH stainless steel after aging at 400 °C

被引:0
|
作者
Natl Research Inst for Metals, Tsukuba, Japan [1 ]
机构
来源
关键词
Age hardening - Aging of materials - Chromium - Copper - Decomposition - Ferrite - Martensite - Metallographic microstructure - Steel heat treatment - Tempering - Transmission electron microscopy;
D O I
暂无
中图分类号
学科分类号
摘要
The microstructure of 17-4 PH stainless steel at various stages of heat treatment, i.e., after solution heat treatment, tempering at 580 °C, and long-term aging at 400 °C, have been studied by atom probe field ion microscopy (APFIM) and transmission electron microscopy (TEM). The solution-treated specimen consists largely of martensite with a small fraction of δ-ferrite. No precipitates are present in the martensite phase, while spherical fcc-Cu particles are present in the δ-ferrite. After tempering for 4 hours at 580 °C, coherent Cu particles precipitate in the martensite phase. At this stage, the Cr concentration in the martensite phase is still uniform. After 5000 hours aging at 400 °C, the martensite spinodaly decomposes into Fe-rich α and Cr-enriched α′. In addition, fine particles of the G-phase (structure type D8a, space group Fm3¯m) enriched in Si, Ni, and Mn have been found in intimate contact with the Cu precipitates. Following spinodal decomposition of the martensite phase, G-phase precipitation occurs after long-term aging.
引用
收藏
相关论文
共 50 条
  • [11] Sintering densification and microstructural evolution of injection molding grade 17-4 PH stainless steel powder
    Yunxin Wu
    Debby Blaine
    Connie Schlaefer
    Brian Marx
    Randall M. German
    Metallurgical and Materials Transactions A, 2002, 33 : 2185 - 2194
  • [12] Sintering densification and microstructural evolution of injection molding grade 17-4 PH stainless steel powder
    Wu, YX
    Blaine, D
    Marx, B
    Schlaefer, C
    German, RM
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2002, 33 (07): : 2185 - 2194
  • [13] MECHANICAL AND MICROSTRUCTURAL PROPERTIES OF SELECTIVE LASER MELTED 17-4 PH STAINLESS STEEL
    Yadollahi, Aref
    Shamsaei, Nima
    Thompson, Scott M.
    Elwany, Alaa
    Bian, Linkan
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2015, VOL 2A, 2016,
  • [14] Direct Energy Depositions of a 17-4 PH Stainless Steel: Geometrical and Microstructural Characterizations
    Morales, Cindy
    Merlin, Mattia
    Fortini, Annalisa
    Fortunato, Alessandro
    COATINGS, 2023, 13 (03)
  • [15] Hydrogen susceptibility of 17-4 PH stainless steel
    Chiang, WC
    Pu, CC
    Yu, BL
    Wu, JK
    MATERIALS LETTERS, 2003, 57 (16-17) : 2485 - 2488
  • [16] Corrosion behaviour and microstructure evolution of 17-4 PH stainless steel foam
    Mutlu, Ilven
    Oktay, Enver
    CORROSION REVIEWS, 2012, 30 (3-4) : 125 - 133
  • [17] Tensile properties and microstructural evolution of 17-4 PH stainless steel fabricated by laser hybrid additive manufacturing technology
    Li, Nan
    Wang, Qiang
    Bermingham, Michael
    Niu, Wenjuan
    Han, Peng
    Guo, Nan
    Li, Shenao
    INTERNATIONAL JOURNAL OF PLASTICITY, 2024, 173
  • [18] Mechanical properties and microstructural characterization of selective laser melted 17-4 PH stainless steel
    Mahmoudi, Mohamad
    Elwany, Alaa
    Yadollahi, Aref
    Thompson, Scott M.
    Bian, Linkan
    Shamsaei, Nima
    RAPID PROTOTYPING JOURNAL, 2017, 23 (02) : 280 - 294
  • [19] KINETICS OF PRECIPITATION IN 17-4 PH STAINLESS-STEEL
    VISWANATHAN, UK
    NAYAR, PKK
    KRISHNAN, R
    MATERIALS SCIENCE AND TECHNOLOGY, 1989, 5 (04) : 346 - 349
  • [20] ON THE HOMOGENIZATION OF COBALT MODIFIED 17-4 PH STAINLESS STEEL
    Murthy, Arpana S.
    Lekakh, Simon
    Richards, Von L.
    Van Aken, David
    EPD CONGRESS 2011, 2011, : 651 - 658