General theory for the deformation behaviour of thin shells in monoclinically convected coordinates

被引:0
|
作者
机构
[1] George, Thomas
[2] Shinoda, Takeshi
[3] Fukuchi, Nobuyoshi
来源
George, Thomas | 1600年 / 50期
关键词
Aerospace Engineering - Spacecraft - Structural Analysis - Structural Design;
D O I
暂无
中图分类号
学科分类号
摘要
The general governing equations describing the finite deformations of thin shell structures developed in a system of monoclinically convected coordinate axes through the tensor geometrical approach are extended here to investigate the finite deformation phenomena of some particular types of deep shells. The results obtained thereby, ensure the scope of the present approach in such cases and call for enthusiastic appraisals from related quarters, through other methods. Further, the nonlinear behaviour of the above governing equation is theoretically developed through a very exacting analytical approach considering the deformed geometry of the shell in the monoclinically convected coordinates, which had been generally undermined or completely absent in similar investigations hitherto. The theoretical possibility of dealing with the problem of large deformations of thin shells in such an elaborate scale is strongly stressed here. The numerical simplicity of these equations are evident in their systematically structured expressions. This is illustrated further by presenting a numerical result obtained using these equations for a thin shallow circular cylindrical shell and its comparison with a published result.
引用
收藏
相关论文
共 50 条
  • [41] MEMBRANE THEORY OF SHELLS OF GENERAL SHAPE
    BROGLIO, L
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1951, 18 (03): : 324 - 324
  • [42] A SIMPLIFIED STABILITY THEORY OF GENERAL SHELLS
    FARSHAD, M
    TABARROK, B
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1989, 25 (03) : 235 - 248
  • [43] Buckling behaviour of thin GRP shells.
    Harte, R
    KUNSTSTOFFE-PLAST EUROPE, 1998, 88 (01): : 86 - 89
  • [44] DEFORMATION BEHAVIOUR OF REINFORCED CONCRETE SHELLS FOR OFFSHORE STRCTURES
    Krakowski, Waldemar
    Empelmann, Martin
    Eckfeldt, Lars
    COMPUTATIONAL METHODS IN MARINE ENGINEERING V (MARINE 2013), 2013, : 854 - 867
  • [45] ON DERIVATION OF THEORY OF THIN ELASTIC SHELLS
    REISSNER, E
    JOURNAL OF MATHEMATICS AND PHYSICS, 1963, 42 (04): : 263 - &
  • [46] ON LINEAR THEORY OF THIN ELASTIC SHELLS
    GREEN, AE
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 266 (1325): : 143 - &
  • [47] A consistent theory of thin elastic shells
    Zveryayev, Ye. M.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2016, 80 (05): : 409 - 420
  • [48] STRATIFICATION METHOD IN THE THEORY OF THIN SHELLS
    TANANAIKO, OD
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1979, 43 (06): : 1143 - 1150
  • [49] ON THE REALIZATION OF TREFFTZ THEORY FOR THIN SHELLS
    BECKERT, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (11): : 401 - 408
  • [50] ON CONJUGATE PROBLEMS IN THE THEORY OF THIN SHELLS
    CHERNYKH, KF
    DOKLADY AKADEMII NAUK SSSR, 1957, 117 (06): : 949 - 951