Recurrence Time Statistics in Chaotic Dynamics. I. Discrete Time Maps

被引:0
|
作者
机构
来源
J Stat Phys | / 1-2卷 / 191期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Early-time critical dynamics of lattices of coupled chaotic maps
    Marcq, P
    Chate, H
    PHYSICAL REVIEW E, 1998, 57 (02): : 1591 - 1603
  • [22] Principles of discrete time mechanics: I. Particle systems
    Jaroszkiewicz, G.
    Norton, K.
    Journal of Physics A: Mathematical and General, 30 (09):
  • [23] Chaotic behaviors of discrete and continuous time nonlinear delay dynamics in optics
    Larger, L
    Lacourt, PA
    Poinsot, S
    Udaltsov, V
    LASER PHYSICS, 2005, 15 (09) : 1209 - 1216
  • [24] Detection of weak transitions in signal dynamics using recurrence time statistics
    Gao, JB
    Cao, YH
    Gu, LY
    Harris, JG
    Principe, JC
    PHYSICS LETTERS A, 2003, 317 (1-2) : 64 - 72
  • [25] The discrete-continuum connection in dislocation dynamics: I. Time coarse graining of cross slip
    Xia, Shengxu
    Belak, James
    El-Azab, Anter
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2016, 24 (07)
  • [26] Effects of prosodic factors on spectral dynamics. I. Analysis
    Wouters, J
    Macon, MW
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2002, 111 (01): : 417 - 427
  • [27] Lightweight encryption mechanism with discrete-time chaotic maps for Internet of Robotic Things
    Kiran, Harun Emre
    Akgul, Akif
    Yildiz, Oktay
    Deniz, Emre
    INTEGRATION-THE VLSI JOURNAL, 2023, 93
  • [28] Geometry of plasma dynamics. I. Group of canonical diffeomorphisms
    Gumral, Hasan
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [29] Compressive sensing lattice dynamics. I. General formalism
    Zhou, Fei
    Nielson, Weston
    Xia, Yi
    Ozolins, Vidvuds
    PHYSICAL REVIEW B, 2019, 100 (18)
  • [30] Return time statistics for unimodal maps
    Bruin, H
    Vaienti, S
    FUNDAMENTA MATHEMATICAE, 2003, 176 (01) : 77 - 94