Recurrence Time Statistics in Chaotic Dynamics. I. Discrete Time Maps

被引:0
|
作者
机构
来源
J Stat Phys | / 1-2卷 / 191期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Recurrence time statistics in chaotic dynamics. I. Discrete time maps
    V. Balakrishnan
    G. Nicolis
    C. Nicolis
    Journal of Statistical Physics, 1997, 86 : 191 - 212
  • [2] Recurrence time statistics in chaotic dynamics .1. Discrete time maps
    Balakrishnan, V
    Nicolis, G
    Nicolis, C
    JOURNAL OF STATISTICAL PHYSICS, 1997, 86 (1-2) : 191 - 212
  • [3] Recurrence time statistics for chaotic systems and their applications
    Gao, JB
    PHYSICAL REVIEW LETTERS, 1999, 83 (16) : 3178 - 3181
  • [4] Inertial stochastic dynamics. I. Long-time-step methods for langevin dynamics
    Beard, DA
    Schlick, T
    JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (17): : 7313 - 7322
  • [5] TIME-DISCRETE MODEL OF CELLULAR POPULATION DYNAMICS.
    Kimmel, Marek
    Systems Science, 1980, 6 (04): : 343 - 359
  • [6] Distinguishing dynamics using recurrence-time statistics
    Ngamga, E. J.
    Senthilkumar, D. V.
    Prasad, A.
    Parmananda, P.
    Marwan, N.
    Kurths, J.
    PHYSICAL REVIEW E, 2012, 85 (02):
  • [7] Problems of nonlinear dynamics. I. Chaos
    Loskutov, A.Yu.
    Vestnik Moskovskogo Universita. Ser. 3 Fizika Astronomiya, 2001, (02): : 3 - 21
  • [8] Random Number Generators Based on Discrete-time Chaotic Maps
    Ergun, Salih
    Tanriseven, Sercan
    PROCEEDINGS OF 18TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES (IEEE EUROCON 2019), 2019,
  • [9] Stabilizing higher periodic orbits of chaotic discrete-time maps
    Lenz, H
    Obradovic, D
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (01): : 251 - 266
  • [10] A Random Number Generation Method Based on Discrete Time Chaotic Maps
    Boyaci, Osman
    Tantug, Ahmet Cuneyd
    2017 IEEE 60TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2017, : 1212 - 1215