Linear spectral mixture models and support vector machines for remote sensing

被引:0
|
作者
Unilever Research, Port Sunlight, Bebington, United Kingdom [1 ]
不详 [2 ]
机构
来源
IEEE Transactions on Geoscience and Remote Sensing | 2000年 / 38卷 / 5 II期
关键词
723.2 Data Processing and Image Processing - 723.3 Database Systems - 731.1 Control Systems - 741 Light; Optics and Optical Devices - 921 Mathematics - 921.6 Numerical Methods;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2346 / 2360
相关论文
共 50 条
  • [31] Estimating biophysical parameters of rice with remote sensing data using support vector machines
    XiaoHua Yang
    JingFeng Huang
    YaoPing Wu
    JianWen Wang
    Pei Wang
    XiaoMing Wang
    Alfredo R. Huete
    Science China Life Sciences, 2011, 54 : 272 - 281
  • [32] Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data
    Munoz-Mari, Jordi
    Bovolo, Francesca
    Gomez-Chova, Luis
    Bruzzone, Lorenzo
    Camps-Valls, Gustavo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (08): : 3188 - 3197
  • [33] Estimating biophysical parameters of rice with remote sensing data using support vector machines
    Alfredo R.HUETE
    Science China(Life Sciences), 2011, 54 (03) : 272 - 281
  • [34] Classification of Remote Sensed Data Using Linear Kernel Based Support Vector Machines
    Rao, Tarun
    Rajasekhar, N.
    Rajinikanth, T. V.
    Sundar, K. S.
    2013 INTERNATIONAL CONFERENCE ON CONTROL COMMUNICATION AND COMPUTING (ICCC), 2013, : 22 - +
  • [35] Score calibrating for speaker recognition based on support vector machines and Gaussian Mixture Models
    Katz, Marcel
    Schaffoener, Martin
    Krueger, Sven E.
    Wendemuth, Andreas
    PROCEEDINGS OF THE NINTH IASTED INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, 2007, : 146 - 151
  • [36] Functional support vector machines and generalized linear models for glacier geomorphology analysis
    Matias, J. M.
    Ordonez, C.
    Taboada, J.
    Rivas, T.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (02) : 275 - 285
  • [37] A Hybrid Approach Combining Conceptual Hydrological Models, Support Vector Machines and Remote Sensing Data for Rainfall-Runoff Modeling
    Kwon, Moonhyuk
    Kwon, Hyun-Han
    Han, Dawei
    REMOTE SENSING, 2020, 12 (11)
  • [38] Fuzzy integral for a rapid mixture of support vector machines
    Nemmour, H
    Chibani, Y
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 901 - 906
  • [39] A mixture of support vector machines for time series forecasting
    Cao, Lijuan
    Zhang Jingqing
    NEURAL NETWORK WORLD, 2006, 16 (05) : 381 - 397
  • [40] CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES BY AN ENSEMBLE OF SUPPORT VECTOR MACHINES UNDER IMBALANCED DATA
    Eeti, Laxmi Narayana
    Buddhiraju, Krishna Mohan
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2659 - 2661