From antibracket to equivariant characteristic classes

被引:0
|
作者
Nersessian, Armen
机构
来源
Turkish Journal of Physics | 2000年 / 24卷 / 03期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We equip the exterior algebra of Riemann manifold by the odd symplectic structure. Then, by its use we construct the equivariant even (pre)symplectic structure, whose Poincare - Cartan invariants of the second structure define the equivariant Euler classes of the surfaces.
引用
收藏
页码:429 / 433
相关论文
共 50 条
  • [21] Chern classes in equivariant bordism
    Schwede, Stefan
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [22] Otopy classes of equivariant maps
    Bartlomiejczyk, Piotr
    Geba, Kazimierz
    Izydorek, Marek
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2010, 7 (01) : 145 - 160
  • [23] Otopy classes of equivariant maps
    Piotr Bartłomiejczyk
    Kazimierz Gęba
    Marek Izydorek
    Journal of Fixed Point Theory and Applications, 2010, 7 : 145 - 160
  • [24] Equivariant higher analytic torsion and equivariant Euler characteristic
    Bunke, U
    AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (02) : 377 - 401
  • [25] On Euler characteristic of equivariant sheaves
    Braverman, A
    ADVANCES IN MATHEMATICS, 2003, 179 (01) : 1 - 6
  • [26] A note on equivariant Euler characteristic
    Mukherjee, A
    Naolekar, AC
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (02): : 163 - 167
  • [27] A note on equivariant Euler characteristic
    Amiya Mukherjee
    Aniruddha C. Naolekar
    Proceedings - Mathematical Sciences, 1997, 107 : 163 - 167
  • [28] From Chern classes to Milnor classes - A history of characteristic classes for singular varieties
    Brasselet, JP
    SINGULARITIES - SAPPORO 1998, 2000, 29 : 31 - 52
  • [29] MOD-2 UNSTABLE EQUIVARIANT SPHERICAL CHARACTERISTIC CLASSES AND POINCARE-DUALITY BORDISM GENERATORS
    MANN, BM
    MILLER, EY
    ILLINOIS JOURNAL OF MATHEMATICS, 1985, 29 (04) : 584 - 608
  • [30] Equivariant, string and leading order characteristic classes associated to fibrations (vol 79, pg 34, 2014)
    Larrain-Hubach, Andres
    Maeda, Yoshiaki
    Rosenberg, Steven
    Torres-Ardila, Fabian
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 607 - 607