Robust support vector regression with flexible loss function

被引:0
|
作者
机构
[1] Wang, Kuaini
[2] Zhong, Ping
来源
Zhong, Ping | 1600年 / Science and Engineering Research Support Society卷 / 07期
关键词
D O I
10.14257/ijsip.2014.7.4.21
中图分类号
学科分类号
摘要
引用
下载
收藏
相关论文
共 50 条
  • [31] On robust twin support vector regression in primal using squared pinball loss
    Anagha, P.
    Balasundaram, S.
    Meena, Yogendra
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (05) : 5231 - 5239
  • [32] Training robust support vector machine based on a new loss function
    Liu, Ye-Qing
    Journal of Donghua University (English Edition), 2015, 32 (02) : 261 - 263
  • [33] Robust support vector machines based on the rescaled hinge loss function
    Xu, Guibiao
    Cao, Zheng
    Hu, Bao-Gang
    Principe, Jose C.
    PATTERN RECOGNITION, 2017, 63 : 139 - 148
  • [34] Training Robust Support Vector Machine Based on a New Loss Function
    刘叶青
    Journal of Donghua University(English Edition), 2015, 32 (02) : 261 - 263
  • [35] A Rough-based Robust Support Vector Regression Network for Function Approximation
    Hsiao, Chih-Ching
    Su, Shun-Feng
    Chuang, Chen-Chia
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 2814 - 2818
  • [36] Bounded quantile loss for robust support vector machines-based classification and regression
    Zhang, Jiaqi
    Yang, Hu
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [37] Ramp-loss nonparallel support vector regression: Robust, sparse and scalable approximation
    Tang, Long
    Tian, Yingjie
    Yang, Chunyan
    Pardalos, Panos M.
    KNOWLEDGE-BASED SYSTEMS, 2018, 147 : 55 - 67
  • [38] Robust multiwavelets support vector regression network
    Zhang, XG
    Ren, SJ
    Xu, JH
    Zhu, ZC
    2005 International Conference on Control and Automation (ICCA), Vols 1 and 2, 2005, : 1220 - 1224
  • [39] Robust regression using support vector regressions
    Sabzekar, Mostafa
    Hasheminejad, Seyed Mohammad Hossein
    CHAOS SOLITONS & FRACTALS, 2021, 144
  • [40] A new smooth support vector regression based on ε-insensitive logistic loss function
    Yang, HZ
    Shao, XG
    Ding, F
    ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 25 - 32