Small-amplitude synchronization in driven Potts models

被引:0
|
作者
Meibohm, Jan [1 ,2 ]
Esposito, Massimiliano [3 ]
机构
[1] Tech Univ Berlin, Str 17 Juni 135, D-10623 Berlin, Germany
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
[3] Univ Luxembourg, Dept Phys & Mat Sci, Complex Syst & Stat Mech, L-1511 Luxembourg, Luxembourg
关键词
ORDER-DISORDER TRANSITIONS; ENTROPY PRODUCTION; CLASSIFICATION; POPULATIONS; REALIZATION; KURAMOTO; POINTS; TIME;
D O I
10.1103/PhysRevE.110.044114
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study driven q-state Potts models with thermodynamically consistent dynamics and global coupling. For a wide range of parameters, these models exhibit a dynamical phase transition from decoherent oscillations into a synchronized phase. Starting from a general microscopic dynamics for individual oscillators, we derive the normal form of the high-dimensional Hopf bifurcation that underlies the phase transition. The normal-form equations are exact in the thermodynamic limit and close to the bifurcation. Exploiting the symmetry of the model, we solve these equations and thus uncover the intricate stable synchronization patterns of driven Potts models, characterized by a rich phase diagram. Making use of thermodynamic consistency, we show that synchronization reduces dissipation in such a way that the most stable synchronized states dissipate the least entropy. Close to the phase transition, our findings condense into a linear dissipation-stability relation that connects entropy production with phase-space contraction, a stability measure. At finite system size, our findings suggest a minimum-dissipation principle for driven Potts models that holds arbitrarily far from equilibrium.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] STABILITY OF PROPAGATING MODONS FOR SMALL-AMPLITUDE PERTURBATIONS
    SAKUMA, H
    GHIL, M
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (03): : 408 - 414
  • [22] EXISTENCE OF SMALL-AMPLITUDE OPTIMUM HYDROFOIL PROPULSION
    SPARENBERG, JA
    JOURNAL OF SHIP RESEARCH, 1978, 22 (04): : 231 - 237
  • [23] On the Initiation of Bubble Detonation by Small-Amplitude Waves
    I. K. Gimaltdinov
    S. A. Lepikhin
    High Temperature, 2022, 60 : 652 - 661
  • [24] Small-amplitude homogenization of elastic plate equation
    Burazin, Kresimir
    Jankov, Jelena
    APPLICABLE ANALYSIS, 2021, 100 (05) : 1039 - 1050
  • [25] A spectral theory for small-amplitude miscible fingering
    Ben, YX
    Demekhin, EA
    Chang, HC
    PHYSICS OF FLUIDS, 2002, 14 (03) : 999 - 1010
  • [26] DAMPING OF SMALL-AMPLITUDE NUCLEAR COLLECTIVE MOTION
    WAMBACH, J
    REPORTS ON PROGRESS IN PHYSICS, 1988, 51 (07) : 989 - 1046
  • [27] Small-amplitude acoustics in bulk granular media
    Henann, David L.
    Valenza, John J., II
    Johnson, David L.
    Kamrin, Ken
    PHYSICAL REVIEW E, 2013, 88 (04)
  • [28] Small-amplitude envelope solitons in nonlinear lattices
    Konotop, VV
    PHYSICAL REVIEW E, 1996, 53 (03): : 2843 - 2858
  • [29] SMOOTH PURSUIT OF SMALL-AMPLITUDE SINUSOIDAL MOTION
    MARTINS, AJ
    KOWLER, E
    PALMER, C
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (02): : 234 - 242
  • [30] Effect of Duxseal on Horizontal Stress and Soil Stiffness in Small-Amplitude Dynamic Centrifuge Models
    Cui, Ge
    Heron, Charles
    Marshall, Alec
    GEOTECHNICAL TESTING JOURNAL, 2022, 45 (03): : 571 - 589