Gas pore-based fatigue strength and fatigue life prediction models of laser additive manufactured Ti-6Al-4V alloy in very high cycle fatigue regime

被引:2
|
作者
Sun, Guanze [1 ]
Zheng, Jianwen [1 ]
Zhao, Zihua [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
VHCF; Laser additive manufactured; Gas pore defect; Low fatigue stress sensitivity; Life prediction; CRACK INITIATION; MECHANICAL-PROPERTIES; TITANIUM-ALLOY; GIGACYCLE FATIGUE; STRESS RATIO; BEHAVIOR; MICROSTRUCTURE; GROWTH; FAILURE; TENSILE;
D O I
10.1016/j.msea.2024.147640
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Due to the high-density energy input characteristics of laser additive manufacturing (AM), gas pores are often as high-frequency defects in additive manufacturing materials, which makes the long-life fatigue service of structures have potential safety hazards. However, the fatigue researches on AM materials mostly focus on the lack of fusion (LoF) defect induced damage. Therefore, we propose an idea whether we can customize an AM alloy only with pore defects, and explore the very high cycle fatigue behavior. Ti-6Al-4V alloy are widely used in aerospace key components, and the research in additive manufacturing is relatively in-depth. Here, we selected laser additive manufactured Ti-6Al-4V alloy as the model material for ultrasonic fatigue test, and carried out defect tomography reconstruction, defect stress field simulation, and fracture quantitative analysis. Based on this, we introduce a low fatigue stress sensitivity coefficient to modify Murakami 's fatigue strength prediction model, and control the prediction ability within the error range of 10 %. Meanwhile, considering the location, size and shape of the pores, the T parameter was established, and the Schmid factor was introduced in combination with the microstructure cracking near the pores, so that the FIP model was optimized, making the predicted lives distribution within 2 times line of actual lives.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Effects of TiN coating on the high-cycle-fatigue and very-high-cycle-fatigue properties of Ti-6Al-4V alloy
    Lu, Kaiju
    Cheng, Li
    Chen, Xuan
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2019, 110 (04) : 307 - 316
  • [22] Very High-Cycle Fatigue and High-Cycle Fatigue of Minor Boron-Modified Ti-6Al-4V Alloy
    Hagiwara, Masuo
    Kitashima, Tomonori
    Emura, Satoshi
    Iwasaki, Satoshi
    Shiwa, Mitsuharu
    MATERIALS TRANSACTIONS, 2019, 60 (10) : 2213 - 2222
  • [23] High cycle fatigue and fatigue crack propagation behaviors of β-annealed Ti-6Al-4V alloy
    Jeong D.
    Kwon Y.
    Goto M.
    Kim S.
    International Journal of Mechanical and Materials Engineering, 2017, 12 (1)
  • [24] HIGH-CYCLE FATIGUE BEHAVIOR OF TI-6AL-4V ALLOY
    STEELE, RK
    MCEVILY, AJ
    ENGINEERING FRACTURE MECHANICS, 1976, 8 (01) : 31 - 37
  • [25] Fatigue in Ti-6Al-4V at very high cycles
    Cao, X. J.
    Sriraman, M. R.
    Wang, Q. Y.
    PRICM 6: SIXTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, PTS 1-3, 2007, 561-565 : 259 - 262
  • [26] Fatigue crack initiation and fatigue life prediction of Ti-6Al-4V ELI
    Niinomi, M
    Akahori, T
    Fukunaga, K
    Eylon, D
    FATIGUE BEHAVIOR OF TITANIUM ALLOYS, 1999, : 307 - 314
  • [27] Fretting fatigue characteristics of titanium alloy Ti-6Al-4V in ultra high cycle regime
    Shirai, S
    Kumuthini, K
    Mutoh, Y
    Nagata, K
    FRETTING FATIGUE: ADVANCES IN BASIC UNDERSTANDING AND APPLICATIONS, 2003, 1425 : 353 - 365
  • [28] Life prediction of fretting fatigue of Ti-6Al-4V
    Jin, Ohchang
    Calcaterra, Jeffrey Ronald
    Mall, Shankar
    FATIGUE & FRACTURE MECHANICS, 35TH VOLUME, 2007, 35 : 174 - +
  • [29] Laser polishing for improving fatigue performance of additive manufactured Ti-6Al-4V parts
    Lee, Seungjong
    Ahmadi, Zabihollah
    Pegues, Jonathan W.
    Mahjouri-Samani, Masoud
    Shamsaei, Nima
    OPTICS AND LASER TECHNOLOGY, 2021, 134
  • [30] Fatigue strength of Ti-6Al-4V at very long lives
    Morrissey, RJ
    Nicholas, T
    INTERNATIONAL JOURNAL OF FATIGUE, 2005, 27 (10-12) : 1608 - 1612