Cooperative Atomically Dispersed Fe-N4 and Sn-N x Moieties for Durable and More Active Oxygen Electroreduction in Fuel Cells

被引:0
|
作者
Xia, Fan [1 ,2 ]
Li, Bomin [1 ]
An, Bowen [1 ]
Zachman, Michael J. [3 ]
Xie, Xiaohong [4 ]
Liu, Yiqi [5 ]
Xu, Shicheng [6 ]
Saha, Sulay [7 ]
Wu, Qin [10 ]
Gao, Siyuan [2 ]
Razak, Iddrisu B. Abdul [8 ]
Brown, Dennis E. [8 ]
Ramani, Vijay [7 ]
Wang, Rongyue [9 ]
Marks, Tobin J. [5 ]
Shao, Yuyan [4 ]
Cheng, Yingwen [1 ,2 ]
机构
[1] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
[2] Northern Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA
[5] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[6] Jinetics Inc, Santa Clara, CA 95050 USA
[7] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA
[8] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA
[9] Argonne Natl Lab, Appl Mat Div, Lemont, IL 60439 USA
[10] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
关键词
FE-57; MOSSBAUER; C CATALYSTS; REDUCTION; FE; SITES; ELECTROCATALYSTS; CARBON; IRON; ORR; IDENTIFICATION;
D O I
10.1021/jacs.4c11121
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One grand challenge for deploying porous carbons with embedded metal-nitrogen-carbon (M-N-C) moieties as platinum group metal (PGM)-free electrocatalysts in proton-exchange membrane fuel cells is their fast degradation and inferior activity. Here, we report the modulation of the local environment at Fe-N4 sites via the application of atomic Sn-N x sites for simultaneously improved durability and activity. We discovered that Sn-N x sites not only promote the formation of the more stable D2 FeN4C10 sites but also invoke a unique D3 SnN x -FeIIN4 site that is characterized by having atomically dispersed bridged Sn-N x and Fe-N4. This new D3 site exhibits significantly improved stability against demetalation and several times higher turnover frequency for the oxygen reduction reaction (ORR) due to the shift of the reaction pathway from a single-site associative mechanism to a dual-site dissociative mechanism with the adjacent Sn site facilitating a lower overpotential cleavage of the O-O bond. This mechanism bypasses the formation of the otherwise inevitable intermediate that is responsible for demetalation, where two hydroxyl intermediates bind to one Fe site. As a result, a mesoporous Fe/Sn-PNC catalyst exhibits a positively shifted ORR half-wave potential and more than 50% lower peroxide formation. This, in combination with the stable D3 site and enriched D2 Fe sites, significantly enhanced the catalyst's durability as demonstrated in membrane electrode assemblies using complementary accelerated durability testing protocols.
引用
收藏
页码:33569 / 33578
页数:10
相关论文
共 50 条
  • [41] A carboxylate linker strategy mediated densely accessible Fe-N4 sites for enhancing oxygen electroreduction in Zn-air batteries
    Wang, Dan
    Zha, Sujuan
    Li, Yaqiang
    Li, Xiaosong
    Wang, Jibiao
    Chu, Yuan
    Mitsuzaki, Naotoshi
    Chen, Zhidong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 665 : 879 - 887
  • [42] Sharply expanding single-atomically dispersed Fe-N active sites through bidirectional coordination for oxygen reduction
    Jin, Huihui
    Yu, Ruohan
    Ji, Pengxia
    Zeng, Weihao
    Li, Zhengying
    He, Daping
    Mu, Shichun
    CHEMICAL SCIENCE, 2024, 15 (19) : 7259 - 7268
  • [43] Atomically Dispersed Fe-N4 Site as a Conductive Bridge Enables Efficient and Stable Activation of Peroxymonosulfate: Active Site Renewal, Anti-Oxidative Capacity, and Pathway Alternation Mechanism
    Zeng, Tao
    Tang, Xiaofeng
    Huang, Zheqing
    Chen, Hong
    Jin, Sijia
    Dong, Feilong
    He, Jia
    Song, Shuang
    Zhang, Haiyan
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (49) : 20929 - 20940
  • [44] Local Single Co Sites at the Second Shell of Fe-N4 Active Sites to Boost Oxygen Reduction Reaction
    Yi, Xiaoyu
    Yang, Huijuan
    Yang, Xiaoxuan
    Li, Xiaokang
    Yan, Cheng
    Zhang, Jianhua
    Chen, Lina
    Dong, Jinjuan
    Qin, Jian
    Zhang, Gaini
    Wang, Jingjing
    Li, Wenbin
    Zhou, Zhiyou
    Wu, Gang
    Li, Xifei
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (09)
  • [45] A specific demetalation of Fe-N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells
    Chenitz, Regis
    Kramm, Ulrike I.
    Lefevre, Michel
    Glibin, Vassili
    Zhang, Gaixia
    Sun, Shuhui
    Dodelet, Jean-Pol
    ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (02) : 365 - 382
  • [46] Atomically Dispersed Fe-N4 Sites and NiFe-LDH Sub-Nanoclusters as an Excellent Air Cathode for Rechargeable Zinc-Air Batteries
    Wang, Yuyang
    Gao, Yaping
    Ma, Lixia
    Xue, Yanzhong
    Liu, Zong-Huai
    Cui, Huali
    Zhang, Nan
    Jiang, Ruibin
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (13) : 16732 - 16743
  • [47] A Highly Efficient Fe-N-C Electrocatalyst with Atomically Dispersed FeN4 Sites for the Oxygen Reduction Reaction
    Jin, Xinxin
    Xie, Yan
    Fu, Junhong
    Zhao, Chaoyue
    Xu, Yinghao
    Lv, Yang
    Zhang, Bingsen
    Sun, Keju
    Si, Rui
    Huang, Jiahui
    CHEMCATCHEM, 2021, 13 (11) : 2683 - 2690
  • [48] A Mesoporous Fe-N-C Active Oxygen Reduction Electrocatalyst for Microbial Fuel Cells
    Fan, Ze-Yu
    Li, Jun
    Yang, Wei
    Zhang, Liang
    Liao, Qiang
    Zhu, Xun
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2019, 40 (12): : 2859 - 2865
  • [49] Atomically dispersed Fe-N-C derived from dual metal-organic frameworks as efficient oxygen reduction electrocatalysts in direct methanol fuel cells
    Xu, Xinlong
    Xia, Zhangxun
    Zhang, Xiaoming
    Sun, Ruili
    Sun, Xuejing
    Li, Huanqiao
    Wu, Chuchu
    Wang, Junhu
    Wang, Suli
    Sun, Gongquan
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 259
  • [50] Unveiling Low Temperature Assembly of Dense Fe-N4 Active Sites via Hydrogenation in Advanced Oxygen Reduction Catalysts
    Yin, Shuhu
    Li, Yanrong
    Yang, Jian
    Liu, Jia
    Yang, Shuangli
    Cheng, Xiaoyang
    Huang, Huan
    Huang, Rui
    Wang, Chong-Tai
    Jiang, Yanxia
    Sun, Shigang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (23)