Learner Phase of Partial Reinforcement Optimizer with Nelder-Mead Simplex for Parameter Extraction of Photovoltaic Models

被引:0
|
作者
Huang, Jinpeng [1 ]
Cai, Zhennao [1 ]
Heidari, Ali Asghar [2 ]
Liu, Lei [3 ]
Chen, Huiling [1 ]
Liang, Guoxi [4 ]
机构
[1] Wenzhou Univ, Dept Comp Sci & Artificial Intelligence, Wenzhou 325035, Peoples R China
[2] Univ Tehran, Sch Surveying & Geospatial Engn, Coll Engn, Tehran 1417935840, Iran
[3] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Sichuan, Peoples R China
[4] Wenzhou Polytech, Dept Artificial Intelligence, Wenzhou 325035, Peoples R China
关键词
Partial reinforcement optimizer; Learner phase; Nelder-Mead simplex algorithm; Parameter extraction; WHALE OPTIMIZATION; SWARM OPTIMIZATION; SOLAR; ALGORITHM; CELL; IDENTIFICATION; SEARCH; POWER; PERFORMANCE; EVOLUTION;
D O I
10.1007/s42235-024-00593-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes an improved version of the Partial Reinforcement Optimizer (PRO), termed LNPRO. The LNPRO has undergone a learner phase, which allows for further communication of information among the PRO population, changing the state of the PRO in terms of self-strengthening. Furthermore, the Nelder-Mead simplex is used to optimize the best agent in the population, accelerating the convergence speed and improving the accuracy of the PRO population. By comparing LNPRO with nine advanced algorithms in the IEEE CEC 2022 benchmark function, the convergence accuracy of the LNPRO has been verified. The accuracy and stability of simulated data and real data in the parameter extraction of PV systems are crucial. Compared to the PRO, the precision and stability of LNPRO have indeed been enhanced in four types of photovoltaic components, and it is also superior to other excellent algorithms. To further verify the parameter extraction problem of LNPRO in complex environments, LNPRO has been applied to three types of manufacturer data, demonstrating excellent results under varying irradiation and temperatures. In summary, LNPRO holds immense potential in solving the parameter extraction problems in PV systems.
引用
收藏
页码:3041 / 3075
页数:35
相关论文
共 48 条
  • [21] Direct model parameter identification of twisted string actuators using Nelder-Mead simplex method
    Zallaghi, Mohammad Javad
    Ghafarirad, Hamed
    Taghvaeipour, Afshin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (15) : 7747 - 7759
  • [22] Improved Parameter Estimation of Three-Phase Squirrel-Cage Induction Motors Using the Nelder-Mead Simplex Algorithm
    Nguyen, Son T.
    Trieu, Linh, V
    Pham, Tu M.
    Hoang, Anh
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2024, 15 (08) : 695 - 703
  • [23] An evolutionary Nelder-Mead slime mould algorithm with random learning for efficient design of photovoltaic models
    Weng, Xuemeng
    Heidari, Ali Asghar
    Liang, Guoxi
    Chen, Huiling
    Ma, Xinsheng
    ENERGY REPORTS, 2021, 7 : 8784 - 8804
  • [24] Parameter Identification for Fractional-order Chaotic System by Using Nelder-Mead Simplex Gravitational Search Algorithm
    Wang, Jiarong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1144 - 1149
  • [25] Fuel cell parameter analysis and constraint optimization based on Nelder-Mead simplex algorithm considering performance degradation
    Zhang, Bo
    Chen, Fengxiang
    Jiao, Jieran
    Pei, Fenglai
    Zhang, Weidong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 69 : 1548 - 1564
  • [26] PARAMETER ESTIMATION FOR A MECHANISTIC MODEL OF HIGH DOSE IRRADIATION DAMAGE USING NELDER-MEAD SIMPLEX METHOD AND GENETIC ALGORITHM
    Siam, Fuaada Mohd
    Kamal, Mohamad Hidayad Ahmad
    Johar, Farhana
    JURNAL TEKNOLOGI, 2016, 78 (12-2): : 87 - 92
  • [27] The Nelder-Mead Method-Based Improved Parameter Estimation of Single-Phase Induction Motors
    Nguyen, Son T.
    Pham, Tu M.
    Hoang, Anh
    Trieu, Linh V.
    Cao, Trung T.
    Pham, Tuan V.
    POWER ELECTRONICS AND DRIVES, 2024, 9 (01) : 519 - 538
  • [28] Nelder-Mead Simplex Algorithm for Age-dependent Parameter Estimation of a Lithium-ion Electrochemical Battery Model
    Madeley, Jesse
    Karunathilake, Dulmini
    Vilathgamuwa, Mahinda
    Mishra, Yateendra
    Farrell, Troy
    Corry, Paul
    2022 IEEE 7TH SOUTHERN POWER ELECTRONICS CONFERENCE, SPEC, 2022,
  • [29] PARAMETER IDENTIFICATION USING THE NELDER-MEAD SIMPLEX ALGORITHM FOR LOW SIGNAL-TO-NOISE RATIO SYSTEMS IN A FREQUENCY DOMAIN
    Fuh, Chyun-Chau
    Tsai, Hsun-Heng
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2019, 27 (04): : 332 - 342
  • [30] Multi-parameter identification of a two-dimensional water-quality model based on the Nelder-Mead Simplex algorithm
    Liu, Xiaodong
    Tu, Qile
    Hua, Zulin
    Huang, Wenrui
    Xing, Linghang
    Zhou, Yuanyuan
    HYDROLOGY RESEARCH, 2015, 46 (05): : 711 - 720