Elaboration of porous polymeric membranes from colloidal crystals

被引:0
|
作者
Casis N. [1 ,2 ]
Fidalgo M.M. [2 ]
Ravaine S. [3 ]
Estenoz D.A. [1 ]
机构
[1] INTEC, Universidad Nacional del Litoral, CONICET, Santa Fe
[2] Departamento de Ingeniería Química, ITBA, Buenos Aires
[3] Centre de Recherche Paul Pascal, Pessac F-33600, Avenue Albert Schweitzer
来源
Informacion Tecnologica | 2010年 / 21卷 / 01期
关键词
Colloidal crystals; Polymeric membranes; Polystyrene; Porous size; Silica;
D O I
10.1612/inf.tecnol.4146it.08
中图分类号
学科分类号
摘要
Polymeric porous membranes with a high control of morphology and porous size were fabricated from colloidal crystals made of silica particles. This fabrication process allows different morphologies according to the particle sizes and number of layers on the templates. Silica particles with a narrow size distribution were synthesized by two methods. Colloidal crystals were obtained by vertical deposition of the particles on a glass substrate and by the Langmuir-Blodgett technique to create templates of different particle sizes. To produce the membrane, polystyrene (PS) and styrene (St)-vinyl benzyl thymine (VBT) copolymers were used. The procedure involved the infiltration of monomers in the templates and then, the polymerization by UV radiation. The proposed method represents a relatively simple alternative, both versatile and economically attractive to manufacture macroporous polymers.
引用
收藏
页码:3 / 8
页数:5
相关论文
共 50 条
  • [21] Inorganic layered polymeric membranes: Highly-ordered porous ceramics for surface engineering of polymeric membranes
    Al-Shaeli, Muayad
    Teber, Og uz Orhun
    Al-Juboori, Raed A.
    Khataee, Alireza
    Koyuncu, Ismail
    Vatanpour, Vahid
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 350
  • [22] Surface Engineering of Polymeric Colloidal Crystals by Temperature - Pressure Annealing
    Varghese, Jeena
    Babacic, Visnja
    Pochylski, Mikolaj
    Gapinski, Jacek
    Butt, Hans-Juergen
    Fytas, George
    Graczykowski, Bartlomiej
    MACROMOLECULAR RAPID COMMUNICATIONS, 2024,
  • [23] Controlled photooxidation of polymeric colloidal crystals for surface patterns tuning
    Kim, Mun Ho
    Jeong, Jae Hyun
    Byun, Doo-Jin
    POLYMER DEGRADATION AND STABILITY, 2015, 120 : 17 - 22
  • [24] ELABORATION AND CHARACTERIZATION OF LEAD PEROVSKITES FROM COLLOIDAL SOLUTION
    LARBOT, A
    BALI, H
    RAFIQ, M
    JULBE, A
    GUIZARD, C
    COT, L
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1992, 147 : 74 - 79
  • [25] Separation of mixed gases through porous polymeric membranes
    Kawai, T
    Lee, YM
    Higuchi, A
    Kamide, K
    JOURNAL OF MEMBRANE SCIENCE, 1997, 126 (01) : 67 - 76
  • [26] Porous polymeric membranes: fabrication techniques and biomedical applications
    Shiohara, Amane
    Prieto-Simon, Beatriz
    Voelcker, Nicolas H.
    JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (09) : 2129 - 2154
  • [27] Ultrasonic detection of defects in highly porous polymeric membranes
    Ramaswamy, S.
    Greenberg, A. R.
    Peterson, M.
    INSIGHT, 2007, 49 (11) : 651 - 656
  • [28] Porous Structure Design of Polymeric Membranes for Gas Separation
    Zhang, Jinshui
    Schott, Jennifer Ann
    Mahurin, Shannon M.
    Dai, Sheng
    SMALL METHODS, 2017, 1 (05):
  • [29] Porous molecularly imprinted polymer membranes and polymeric particles
    Sergeyeva, T. A.
    Brovko, O. O.
    Piletska, E. V.
    Piletsky, S. A.
    Goncharova, L. A.
    Karabanova, L. V.
    Sergeyeva, L. M.
    El'skaya, A. V.
    ANALYTICA CHIMICA ACTA, 2007, 582 (02) : 311 - 319
  • [30] MECHANISM OF PERMSELECTIVITY OF POROUS POLYMERIC MEMBRANES IN ULTRAFILTRATION PROCESS
    KAMIDE, K
    MANABE, S
    POLYMER JOURNAL, 1981, 13 (05) : 459 - 479