Enhanced hot corrosion resistance of AlCoCrFeNi2.1 high entropy alloy coatings by extreme high-speed laser cladding

被引:2
|
作者
Zhang, Li [1 ]
Ji, Yan [1 ]
Wang, Yunxin [1 ]
Yang, Bin [1 ]
机构
[1] Univ Sci & Technol Beijing, Collaborat Innovat Ctr Steel Technol, Beijing 100083, Peoples R China
关键词
Laser cladding; High entropy alloy; Coating; Hot corrosion; BEHAVIOR; MICROSTRUCTURE;
D O I
10.1016/j.corsci.2024.112486
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Extreme high-speed laser cladding (EHLC) and multiple laser remelting (EHLC-MR) are used to improve hot corrosion resistance of AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) coatings by refining their microstructures, introducing low angle grain boundaries (LAGBs) and high densities of dislocations as well as higher compressive residual stresses (CRSs) in the coatings. The experimental results show that finer microstructure, more LAGBs and high densities of dislocations are beneficial to increase Al2O3 nucleation sites and promote the uniform formation of the oxide layer on the coating surface. On the other hand, higher CRSs suppress the initiation and propagation of cracks as well as enhance the adhesion between the oxide layer and the substrate. Thus the hot corrosion resistance of the EHEA coatings under a molten salt of 75 % Na2SO4 + 25 % NaCl at 900 degrees C is improved significantly. These novel results provide effective approach for designing elevated-temperature materials.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Load redistribution in eutectic high entropy alloy AlCoCrFeNi2.1 during high temperature deformation
    Jaladurgam, Nitesh Raj
    Lozinko, Adrianna
    Guo, Sheng
    Harjo, Stefanus
    Colliander, Magnus Hörnqvist
    Materialia, 2022, 22
  • [42] Effect of high-speed laser cladding on microstructure and corrosion resistance of CoCrFeNiMo0.2 high-entropy alloy
    Ma Xu-feng
    Sun Yao-ning
    Cheng Wang-jun
    Chong Zhen-zeng
    Huang Liu-fei
    Meng A-cong
    Jiang Li-heng
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2022, 29 (10) : 3436 - 3446
  • [43] Effect of scanning speed on microstructure and mechanical properties of selective laser melting AlCoCrFeNi2.1 eutectic high-entropy alloy
    Lan, Liwei
    Wang, Wenxian
    Cui, Zeqin
    Hao, Xiaohu
    MATERIALS LETTERS, 2023, 330
  • [44] Comparison of Microstructure and Corrosion Resistance of 431 Stainless Steel Coatings Prepared by Extreme High-Speed Laser Cladding and Conventional Laser Cladding
    Li Liqun
    Shen Faming
    Zhou Yuandong
    Tao Wang
    Wang Wei
    Wang Shuliang
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (10):
  • [45] Effect of Ti addition on the microstructure and corrosion behavior of laser cladding AlCoCrFeNi high-entropy alloy coatings
    Yue, Kun
    Wang, Lin
    Xu, Zhe
    Cheng, Chunlong
    Wang, Yeqing
    Fan, Yu
    Xu, Jie
    Wang, Zhijun
    Chen, Zheng
    VACUUM, 2024, 230
  • [46] Enhanced strength-ductility synergy of an AlCoCrFeNi2.1 eutectic high entropy alloy by ultrasonic vibration
    Long, Xiang
    Li, Zu
    Yan, Jialin
    Zhang, Tao
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 4633 - 4643
  • [47] Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy
    Gao, Xuzhou
    Lu, Yiping
    Zhang, Bo
    Liang, Ningning
    Wu, Guanzhong
    Sha, Gang
    Liu, Jizi
    Zhao, Yonghao
    ACTA MATERIALIA, 2017, 141 : 59 - 66
  • [48] Load redistribution in eutectic high entropy alloy AlCoCrFeNi2.1 during high temperature deformation
    Jaladurgam, Nitesh Raj
    Lozinko, Adrianna
    Guo, Sheng
    Harjo, Stefanus
    Colliander, Magnus Hornqvist
    MATERIALIA, 2022, 22
  • [49] Unleashing the microstructural evolutions during hot deformation of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy
    Charkhchian, J.
    Zarei-Hanzaki, A.
    Schwarz, T. M.
    Lawitzki, R.
    Schmitz, G.
    Schell, N.
    Shen, Jiajia
    Oliveira, J. P.
    Waryoba, Daudi
    Abedi, H. R.
    INTERMETALLICS, 2024, 168
  • [50] A selective laser melted AlCoCrFeNi2.1 eutectic high-entropy alloy with improved synergy of strength and hydrogen embrittlement resistance
    Fu, Zhenghong
    Li, Xi
    Wu, Pengfei
    Liao, Lei
    OPTICS AND LASER TECHNOLOGY, 2025, 183