Weakly-Supervised Pavement Surface Crack Segmentation Based on Dual Separation and Domain Generalization

被引:3
|
作者
Tao, Huanjie [1 ,2 ,3 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710129, Peoples R China
[2] Minist Educ, Engn Res Ctr Embedded Syst Integrat, Xian 710129, Peoples R China
[3] Natl Engn Lab Integrated Aerosp Ground Ocean Big D, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Annotations; Training; Surface cracks; Power capacitors; Manuals; Image reconstruction; Data models; Accuracy; Visualization; Pavement surface crack segmentation; weakly-supervised segmentation; image-level labels;
D O I
10.1109/TITS.2024.3464528
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Automatic pavement surface crack segmentation is crucial for efficient and cost-effective road maintenance. Despite fully-supervised crack segmentation methods have achieved significant success, the laborious task of pixel-level annotation hampers their widespread applicability. To address this issue, this paper presents a weakly-supervised pavement surface crack segmentation method based on Dual Separation and Domain Generalization (DSDGNet). Firstly, a crack image formulation model (CIFM) is developed by separating the crack image into a background component and a crack component. Additionally, we treat the crack component as a linear fusion of the pavement texture component and the crack mask. Secondly, a local-to-global learning method (L2G-L) is proposed to learn complete crack via local learning based on a random cropping and pasting algorithm. This idea stems from the observation that the crack component can be separated into several local regions, akin to the local regions found in hand-drawn crack components. Thirdly, A progressive interaction training algorithm (PIT) is crafted to train the image generation model by leveraging both generated and real images, thereby narrowing the divide between generated and authentic crack images. Finally, realistic and diverse crack images, along with their crack masks, are generated to facilitate the training of fully-supervised segmentation models. A generalizable loss is proposed to enhance the model generalization ability by combining reconstruction, segmentation, and domain adversarial losses. Extensive experiments on six public pavement crack datasets show the effectiveness and superiority of DSDGNet in weakly-supervised methods.
引用
收藏
页码:19729 / 19743
页数:15
相关论文
共 50 条
  • [21] Weakly-Supervised Image Semantic Segmentation Based on Superpixel Region Merging
    Jiang, Quanchun
    Tawose, Olamide Timothy
    Pei, Songwen
    Chen, Xiaodong
    Jiang, Linhua
    Wang, Jiayao
    Zhao, Dongfang
    BIG DATA AND COGNITIVE COMPUTING, 2019, 3 (02) : 1 - 20
  • [22] DICTIONARY LEARNING BASED SUPERPIXELS CLUSTERING FOR WEAKLY-SUPERVISED SEMANTIC SEGMENTATION
    Ying, Peng
    Liu, Jing
    Lu, Hanqing
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4258 - 4262
  • [23] Universal and Scalable Weakly-Supervised Domain Adaptation
    Liu, Xuan
    Huang, Ying
    Wang, Hao
    Xiao, Zheng
    Zhang, Shigeng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1313 - 1325
  • [24] Weakly-Supervised Point Cloud Semantic Segmentation Based on Dilated Region
    Zhang, Lujian
    Bi, Yuanwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 20
  • [25] Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy With Sparse Point Annotation
    Qiu, Dafei
    Xiong, Shan
    Yi, Jiajin
    Peng, Jialin
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 359 - 371
  • [26] Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation
    Kim, Beomyoung
    Han, Sangeun
    Kim, Junmo
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1754 - 1761
  • [27] Discriminative region suppression for weakly-supervised semantic segmentation
    Korea Advanced Institute of Science and Technology , Korea, Republic of
    arXiv, 1600,
  • [28] Expansion and Shrinkage of Localization for Weakly-Supervised Semantic Segmentation
    Li, Jinlong
    Jie, Zequn
    Wang, Xu
    Wei, Xiaolin
    Ma, Lin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [29] Weakly-Supervised Semantic Segmentation Using Motion Cues
    Tokmakov, Pavel
    Alahari, Karteek
    Schmid, Cordelia
    COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 388 - 404
  • [30] HYPERGRAPH CONVOLUTIONAL NETWORKS FOR WEAKLY-SUPERVISED SEMANTIC SEGMENTATION
    Giraldo, Jhony H.
    Scarrica, Vincenzo
    Staiano, Antonino
    Camastra, Francesco
    Bouwmans, Thierry
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 16 - 20