Recently, more frequent and severe natural hazards that are caused by climate change have posed a great threat to the safety of transport systems worldwide. To enhance bridges’ resilience to natural hazards, this paper proposes a new maintenance policy that is based on machine learning (ML) for managing bridges that cross waterways in France. Two ML models, for example, random forest (RF) and extreme gradient boosting (XGBoost) classifiers, are tested on bridges in France and Japan to investigate the model’s practicality and robustness. Data from these bridges has never been seen by the model before; however, it is in the same range as the original data set. To verify the test results on the unseen data, predictions from the French cases are compared with engineering judgment, and they are in agreement (95% between the senior engineer and the XGBoost model). When comparing the Japanese case test results with the Japanese guideline’s scoring table (ST), predictions are not as accurate as in the French cases. This might be caused by the different data distribution between the two countries and the lower threshold for high scour risk cases in the Japanese guidelines. Based on the results of the original and unseen data sets, application scenarios are suggested for each model. Finally, to facilitate the use of the proposed model, a friendly web application was demonstrated to reduce computational complexity. The outcome of this paper could help to identify bridges that are vulnerable to scour in an effective yet intelligent way, which will, in the end, ensure the safety of the rail network. In addition, it could provide insights to other countries’ transport agencies who want to develop their ML-based maintenance policy. © 2024 American Society of Civil Engineers.