Self-healing PVA/Chitosan/MXene triple network hydrogel for strain and temperature sensors

被引:0
|
作者
Xu, Bingbing [1 ,2 ,4 ]
Zhang, Yue [1 ,2 ]
Li, Jia [1 ,2 ]
Wang, Boxiang [1 ,2 ]
Li, Ruoxin [3 ]
Cheng, Dehong [1 ,2 ]
Chang, Guangtao [3 ]
机构
[1] College of Textiles and garment, Liaodong University, Dandong,118003, China
[2] Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong,118003, China
[3] College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou,215123, China
[4] Key Laboratory of Jiangsu Province for Silk Engineering, Soochow University, Suzhou,215123, China
基金
中国国家自然科学基金;
关键词
Chitosan - Self-healing materials - Tensile strain;
D O I
10.1016/j.ijbiomac.2024.138811
中图分类号
学科分类号
摘要
Conductive hydrogels have attracted intensive attention for their promising applications in flexible electronics, sensors, and electronic skins. However, extremely poor adaptability under cold or dry environmental conditions along with inferior repairability seriously hinders the development of hydrogels in wearable electronics. Here, a triple network conductive hydrogel (PBCPA-MXene) was prepared by proportionally mixing polyvinyl alcohol (PVA), borax, chitosan (CS), phytic acid (PA), and MXene. The prepared triple network hydrogels composed of robust chitosan polysaccharide as the first network, tough PVA biopolymer gel as the second network, and MXene nanosheets as the third network. Facilitated by triple networks, multiple hydrogen bonds, and electrostatic interactions of CS and PA, the obtained hydrogels not only exhibited outstanding mechanical properties (tensile strain of ∼1580 %, stress of ∼280 kPa) and electrical properties (∼ 2.72 S/m), but also possessed excellent self-healing, self-adhesion, anti-freezing and anti-drying properties. This work presents a strategy for the development of biopolysaccharide hydrogels for applications in the field of sensors. © 2024 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [1] Self-healing, antibacterial, and conductive double network hydrogel for strain sensors
    Liu, Chenglu
    Xu, Zhengyan
    Chandrasekaran, Sundaram
    Liu, Yongping
    Wu, Mengyang
    CARBOHYDRATE POLYMERS, 2023, 303
  • [2] Conductive, self-healing, and antibacterial Ag/MXene-PVA hydrogel as wearable skin-like sensors
    Li, Lumin
    Ji, Xiaofeng
    Chen, Kai
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2023, 37 (07) : 1169 - 1181
  • [3] Preparation of multifunctional self-healing MXene/PVA double network hydrogel wearable strain sensor for monitoring human body and organ movement
    Wang, Xiaoming
    Weng, Ling
    Zhang, Xiaorui
    Guan, Lizhu
    Li, Xue
    CERAMICS INTERNATIONAL, 2023, 49 (16) : 26759 - 26766
  • [4] Tough, Self-Healing, Strain-Sensitive MXene/Ni Hydrogel for Electromagnetic Shielding and Wearable Sensors
    Yuan, Ying
    You, Qiao
    Qiu, Shunjian
    Wang, Zhiming
    Chen, Yunhua
    Wang, Chaoyang
    Zhou, Li
    Liu, Hongxia
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (18): : 11406 - 11419
  • [5] Ultrafast Self-Healing and Injectable Conductive Hydrogel for Strain and Pressure Sensors
    Ye, Fengming
    Li, Meng
    Ke, Dingning
    Wang, Liping
    Lu, Yi
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (09):
  • [7] Ultra-stretchable, self-healing, bonding, and skin-inspired conductive triple network hydrogel for wearable strain sensors and friction nanogenerators
    Han, Dong
    Wang, Guoqing
    Xu, Xinye
    Chen, Jiankang
    Lu, Min
    Liu, Xiang
    Zhang, Lili
    Lai, Linfei
    POLYMER, 2024, 305
  • [8] Low temperature tolerant, ultrasensitive strain sensors based on self-healing hydrogel for self-monitor of human motion
    Dai, Shengping
    Hu, Xinghao
    Xu, Xiuzhu
    Cao, Xiaoting
    Chen, Yuewen
    Zhou, Xiaoshuang
    Ding, Jianning
    Yuan, Ningyi
    SYNTHETIC METALS, 2019, 257
  • [9] High toughness and self-healing conductive hydrogels of chitosan-poly acrylic acid-MXene and capability for strain sensors
    Li Z.
    Deng X.
    Han W.
    Xie Z.
    Cai S.
    Peng X.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2024, 41 (04): : 2074 - 2082
  • [10] A self-adhesive, self-healing and antibacterial hydrogel based on PVA/MXene-Ag/sucrose for fast-response, high-sensitivity and ultra-durable strain sensors
    Li, Chenxing
    Zheng, Ao
    Zhou, Jiayi
    Huang, Wenwei
    Zhang, Yan
    Han, Jingxuan
    Cao, Lingyan
    Yang, Dongye
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (14) : 6621 - 6630