Discrete quantum-behaved particle swarm optimization for the multi-unit combinatorial auction winner determination problem

被引:1
|
作者
Farzi S. [1 ]
机构
[1] Department of Computer Engineering, Islamic Azad University of Kermanshah
关键词
Binary search space; Combinatorial auction; Genetic algorithm; Swarm algorithm;
D O I
10.3923/jas.2010.291.297
中图分类号
学科分类号
摘要
Combinatorial auctions are efficient mechanisms for allocating resource in complex marketplace. Winner determination, which is NP-complete, is the core problem in combinatorial auctions. In this study we introduce a discrete quantum-behaved particle swarm optimization algorithm with a penalty function for solving the winner determination problem. Particle swarm optimization is a population-based swarm intelligence algorithm. A quantum-behaved particle swarm optimization is also proposed by combining the classical particle swarm optimization philosophy and quantum mechanics to improve performance of particle swarm optimization. Since, potential solutions are presented in binary space, we use a discrete version of quantum-behaved particle swarm optimization that introduced to discrete binary search space. And the penalty function has been applied to overcome constraints. We evaluated our approach in two steps. First we showed that the discrete quantum-behaved particle swarm optimization is applicable to the problem. Second we compared our approach with CASS (Combinatorial Auction Structured Search), Casanova, Genetic algorithm and OMAGA (Orthogonal Multi-Agent Genetic Algorithm) on eight standard test tests used by other researchers. The results showed that the discrete quantum-behaved particle swarm optimization in comparison to other algorithms is better on five test sets worse on one test set and same on two test sets. Therefore, we could conclude that our approach for solving the multi-unit combinatorial auction winner determination problem is suitable and could find the best solutions. © 2010 Asian Network for Scientific Information.
引用
收藏
页码:291 / 297
页数:6
相关论文
共 50 条
  • [21] A Novel Quantum-Behaved Particle Swarm Optimization Algorithm
    Wu, Tao
    Xie, Lei
    Chen, Xi
    Ashrafzadeh, Amir Homayoon
    Zhang, Shu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 63 (02): : 873 - 890
  • [22] A cooperative approach to quantum-behaved particle swarm optimization
    Kang, Yan
    Xu, Wenbo
    Sun, Jun
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 332 - 337
  • [23] Quantum-behaved Particle Swarm Optimization with binary encoding
    Sun, Jun
    Xu, Wenbo
    Fang, Wei
    Chai, Zhilei
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 376 - +
  • [24] Quantum-behaved particle swarm optimization with immune operator
    Liu, Jing
    Sun, Jun
    Xu, Wenbo
    FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2006, 4203 : 77 - 83
  • [25] Quantum-behaved particle swarm optimization based on solitons
    Saeed Fallahi
    Mohamadreza Taghadosi
    Scientific Reports, 12
  • [26] Quantum-behaved particle swarm optimization based on solitons
    Fallahi, Saeed
    Taghadosi, Mohamadreza
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [27] Quantum-behaved particle swarm optimization with chaotic search
    Yang, Kaiqiao
    Nomura, Hirosato
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (07): : 1963 - 1970
  • [28] An Improved Quantum-Behaved Particle Swarm Optimization Algorithm
    Yang, Jie
    Xie, Jiahua
    2010 2ND INTERNATIONAL ASIA CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (CAR 2010), VOL 2, 2010, : 159 - 162
  • [29] An improved quantum-behaved particle swarm optimization algorithm
    Li, Panchi
    Xiao, Hong
    APPLIED INTELLIGENCE, 2014, 40 (03) : 479 - 496
  • [30] Quantum-behaved Particle Swarm Optimization clustering algorithm
    Sun, Jun
    Xu, Wenbo
    Ye, Bin
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 340 - 347