Mechanical Properties of Subgrade Soil Reinforced with Basalt Fiber and Cement under Freeze-Thaw Cycles

被引:3
|
作者
Niu, Weiwei [1 ,2 ]
Liu, Jiankun [1 ]
Kravchenko, Ekaterina [3 ]
Zheng, Yuanyuan [1 ]
Tai, Bowen [4 ]
Wei, Pengchang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Civil Engn, Zhuhai 519082, Guangdong, Peoples R China
[2] Shenyang Inst Technol, Sch Energy & Water Conservancy, Shenyang 113122, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Clear Water Bay, Hong Kong, Peoples R China
[4] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Cold region; Fiber-reinforced cemented soil; Static/dynamic triaxial compression test; Shear strength; COMPRESSIVE STRENGTH; ASH GEOPOLYMER; MICROSTRUCTURE; CLAY;
D O I
10.1061/JMCEE7.MTENG-17161
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The stability of soil is an essential requirement for various geotechnical engineering projects. The application of composite materials made from cemented soil has become prevalent in road subgrade engineering and foundation treatment due to their affordability, quick construction, and ability to withstand high compression forces. However, the mechanism about the incorporating fibers into cemented soil to enhance strength characteristics, mitigate the formation of microcracks in the soil matrix, and increase frost resistance is still unclear. In this study, a composite improvement method of adding basalt fiber (BF) to cemented soil is proposed, which is to select a single subgrade filling material with most significant freeze-thaw (FT) durability on the basis of traditional cement improvement methods. A series of static/dynamic triaxial compression tests were performed with cemented soil samples reinforced by three BF contents (0, 0.25%, 0.50%, and 0.75%) after FT cycles. The physical properties of these samples were studied, such as the optimal ratio of fiber content, the stress-strain relationship, failure strength, shear strength, and shear modulus, among others. The results revealed that both the shear modulus and failure strength of cemented subgrade soil reinforced with BF showed a significant increase. Compared with cemented soil, fiber-cemented soil exhibited a lower reduction rate in its mechanical properties after 15 FT cycles. The cohesion of the reinforced soil exhibited a gradual decrease as the number of FT cycles increased. Conversely, the friction angle initially decreased but later exhibited an increase. Compared with the reinforcement effects of BF at 0.25% and 0.75%, fiber-reinforced cemented soil with BF content of 0.5% demonstrated the highest strength and performed well in minimizing the effect of FT cycles. It is therefore recommended that ratio of 6% cement and 0.5% BF should be used to enhance the integrity of subgrade filling materials on silty clay.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Effects of Freeze-Thaw Cycles on the Mechanical Properties and Microstructure of a Dispersed Soil
    Zhang, Shurui
    Xu, Xin
    Dong, Xiaoqiang
    Lei, Haomin
    Sun, Xun
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [42] Review of the influence of freeze-thaw cycles on the physical and mechanical properties of soil
    Dan Chang
    JianKun Liu
    Sciences in Cold and Arid Regions, 2013, 5 (04) : 457 - 460
  • [43] Impact dynamic mechanical properties of frozen soil with freeze-thaw cycles
    Li B.
    Zhu Z.
    Li T.
    Baozha Yu Chongji/Explosion and Shock Waves, 2022, 42 (09):
  • [44] Bond properties of basalt fiber reinforced polymer (BFRP) bars in recycled aggregate thermal insulation concrete under freeze-thaw cycles
    Wang, Wenjing
    Wang, Yang
    Chen, Qiang
    Liu, Yuanzhen
    Zhang, Yu
    Ma, Gang
    Duan, Pengfei
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 329
  • [45] Dynamic Behavior of Rubber Fiber-Reinforced Expansive Soil under Repeated Freeze-Thaw Cycles
    Sun, Zhenxing
    Wang, Rongchang
    Yang, Zhongnian
    Lv, Jianhang
    Shi, Wei
    Ling, Xianzhang
    POLYMERS, 2024, 16 (19)
  • [46] Effects of freeze-thaw cycles on the mechanical properties of cement-fiber composite treated silty clay
    Tao, Zefeng
    Zhang, Yu
    Chen, Xinran
    Gu, Xiaoming
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 316
  • [47] Constitutive Damage Model for Rubber Fiber-Reinforced Expansive Soil under Freeze-Thaw Cycles
    Wang, Rongchang
    Yang, Zhongnian
    Ling, Xianzhang
    Shi, Wei
    Sun, Zhenxing
    Qin, Xipeng
    MATERIALS, 2024, 17 (20)
  • [48] The effect of freeze-thaw cycles on mechanical properties of fine-grained soil modified by cement and nanocement
    Yousefi A.
    Jahanian H.
    Azadi M.
    Scientia Iranica, 2022, 29 (6 A) : 2940 - 2952
  • [49] The effect of freeze-thaw cycles on mechanical properties of fine-grained soil modified by cement and nanocement
    Yousefi, A.
    Jahanian, H.
    Azadi, M.
    SCIENTIA IRANICA, 2022, 29 (06) : 2940 - 2952
  • [50] Long-term performance of basalt fiber reinforced composite under coupled effect of alkalinity and freeze-thaw cycles
    Qin, Renyuan
    Li, Kexuan
    Guo, Yantong
    Liu, Tiejun
    Zhou, Ao
    Zheng, Yu
    JOURNAL OF BUILDING ENGINEERING, 2024, 91