1343. Online milling tool condition monitoring with a single continuous hidden Markov models approach

被引:0
|
作者
机构
[1] [1,Chen, Lu
[2] 1,Tieying, Li
[3] Hongmei, Liu
来源
Hongmei, Liu (liuhongmei@buaa.edu.cn) | 1600年 / Vibromechanika卷 / 16期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] A comparative evaluation of neural networks and hidden Markov models for monitoring turning tool wear
    Scheffer, C
    Engelbrecht, H
    Heyns, PS
    NEURAL COMPUTING & APPLICATIONS, 2005, 14 (04): : 325 - 336
  • [42] Online Tool Wear Monitoring Via Hidden Semi-Markov Model With Dependent Durations
    Zhu, Kunpeng
    Liu, Tongshun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (01) : 69 - 78
  • [43] On-line tool wear monitoring under variable milling conditions based on a condition-adaptive hidden semi-Markov model (CAHSMM)
    Yan, Shichao
    Sui, Liang
    Wang, Siqi
    Sun, Yuwen
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 200
  • [44] Application of measurement systems in tool condition monitoring of Milling: A review of measurement science approach
    Pimenov, Danil Yu.
    Gupta, Munish Kumar
    da Silva, Leonardo R. R.
    Kiran, Maitri
    Khanna, Navneet
    Krolczyk, Grzegorz M.
    MEASUREMENT, 2022, 199
  • [45] A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings
    Liu, Jie
    Hu, Youmin
    Wu, Bo
    Wang, Yan
    Xie, Fengyun
    SENSORS, 2017, 17 (05):
  • [46] Self-organizing feature maps and hidden Markov models for machine-tool monitoring
    Univ of Washington, Seattle, United States
    IEEE Trans Signal Process, 11 (2787-2798):
  • [47] Self-organizing feature maps and hidden Markov models for machine-tool monitoring
    Owsley, LMD
    Atlas, LE
    Bernard, GD
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (11) : 2787 - 2798
  • [48] Force-based tool wear estimation for milling process using Gaussian mixture hidden Markov models
    Dongdong Kong
    Yongjie Chen
    Ning Li
    The International Journal of Advanced Manufacturing Technology, 2017, 92 : 2853 - 2865
  • [49] Force-based tool wear estimation for milling process using Gaussian mixture hidden Markov models
    Kong, Dongdong
    Chen, Yongjie
    Li, Ning
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 92 (5-8): : 2853 - 2865
  • [50] Fault Classification Improvement in Industrial Condition Monitoring via Hidden Markov Models and Naive Bayesian Modeling
    2013 IEEE SYMPOSIUM ON INDUSTRIAL ELECTRONICS & APPLICATIONS (ISIEA 2013), 2013, : 75 - 80