New q-ary quantum MDS codes of length strictly larger than q+1

被引:0
|
作者
Kircali, Mustafa [1 ]
Ozbudak, Ferruh [1 ,2 ]
机构
[1] Middle East Tech Univ, Inst Appl Math, TR-06800 Ankara, Turkiye
[2] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkiye
关键词
Quantum MDS codes; Truncated code; Reed-Solomon code; Hermitian self-orthogonal code; CONSTACYCLIC CODES; CONSTRUCTION;
D O I
10.1007/s11128-024-04598-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum information and quantum computation have become a hot topic in recent decades. Quantum error-correcting codes are useful and have many applications in quantum computations and quantum communications. We construct a new class of quantum Maximum Distance Separable (MDS) codes. Our construction is based on a recent result of Ball and Vilar (IEEE Trans Inf Theory 68:3796-3805, 2022). We study a large class of explicit polynomials and obtain their required arithmetical properties which imply construction of new q-ary quantum MDS codes of length strictly larger than q+1, when q is odd.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] On the Minimum Length of q-ary Linear Codes of Dimension Five
    TATSUYA MARUTA
    Geometriae Dedicata, 1997, 65 : 299 - 304
  • [22] On the minimum length of q-ary linear codes of dimension five
    Maruta, T
    GEOMETRIAE DEDICATA, 1997, 65 (03) : 299 - 304
  • [23] On the minimum length of q-ary linear codes of dimension four
    Maruta, T
    DISCRETE MATHEMATICS, 1999, 208 : 427 - 435
  • [24] Several families of q-ary cyclic codes with length qm-1
    Li, Jin
    Zhu, Huan
    Huang, Shan
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2024, 16 (06): : 1357 - 1381
  • [25] Intersections of q-ary perfect codes
    Solov'eva, F. I.
    Los', A. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (02) : 375 - 382
  • [26] Nonequivalent q-ary perfect codes
    Etzion, T
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (03) : 413 - 423
  • [27] A new construction for q-ary constant weight codes
    Zhu, Canze
    Liao, Qunying
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [28] On the q-ary image of cyclic codes
    Jensen, JM
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, 1997, 1255 : 189 - 196
  • [29] Intersections of q-ary perfect codes
    F. I. Solov’eva
    A. V. Los’
    Siberian Mathematical Journal, 2008, 49 : 375 - 382
  • [30] ON NORMAL AND SUBNORMAL Q-ARY CODES
    LOBSTEIN, AC
    VANWEE, GJM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (06) : 1291 - 1295