Catalytic reforming of tar for enhancing hydrogen production from gasification of hazardous medical waste

被引:0
|
作者
Yousef, Samy [1 ]
Eimontas, Justas [2 ]
Zakarauskas, Kestutis [2 ]
Striugas, Nerijus [2 ]
Pitak, Inna [3 ]
机构
[1] Kaunas Univ Technol, Fac Mech Engn & Design, Dept Prod Engn, LT-51424 Kaunas, Lithuania
[2] Lithuanian Energy Inst, Lab Combust Proc, Breslaujos 3, LT-44403 Kaunas, Lithuania
[3] Lithuanian Energy Inst LEI, Lab Mat Res & Testing, Breslaujos 3, LT-44403 Kaunas, Lithuania
关键词
Hazardous medical waste; Steam-oxygen gasification; Catalytic reforming process; Tar cracking; Hydrogen; NI/GAMMA-AL2O3; OIL;
D O I
10.1016/j.energy.2024.134184
中图分类号
O414.1 [热力学];
学科分类号
摘要
Steam-oxygen gasification process has recently had significant successes in converting hazardous medical waste (HMW) into syngas, but it still contains larger amounts of tar than recommended for industrial use, requiring its removal. In this context, this work aims to upgrade syngas derived from HMW gasification using a catalytic reforming process to eliminate tar and increase its hydrogen (H2) content. The experiments were performed on waste surgical masks (as the most common type of HMW) using an integrated conversion system consisting of an updraft gasifier connected in series to a catalytic reforming reactor. A gasifier was used to convert to H2-rich syngas at 900 degrees C with tar content of 79.23 g/m3 in a steam-oxygen atmosphere with an equivalence air ratio = 0.19 and steam to carbon molar ratio = 1. Then, the tar-laden syngas derived from the gasifier was passed directly to the reforming reactor to carry out the upgrading process using different types of catalysts. The results showed that ZSM-5 and Y-Type catalysis had lower H2 production performance up to 45 vol% and higher tar content in the ranges of 43.6-58.5 g/m3. While Ni/gamma Al2O3, KATALCOTM 57-4GQ, and Ni/Mg-porous clay heterostructure (PCH) catalysts had a higher H2 production up to 59 vol%. Beside their superior ability to completely eliminate tar content. Accordingly, steam oxygen gasification with catalytic reforming process on Ni/ gamma Al2O3, KATALCOTM 57-4GQ and Ni/Mg-PCH catalysts is highly recommended to process HMW into H2-rich syngas free of tar content.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review
    Ru Shien Tan
    Tuan Amran Tuan Abdullah
    Anwar Johari
    Khairuddin Md Isa
    Frontiers in Energy, 2020, 14 : 545 - 569
  • [2] Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review
    Tan, Ru Shien
    Abdullah, Tuan Amran Tuan
    Johari, Anwar
    Isa, Khairuddin Md
    FRONTIERS IN ENERGY, 2020, 14 (03) : 545 - 569
  • [3] Hydrogen production from catalytic steam reforming of benzene as tar model compound of biomass gasification
    Gao, Ningbo
    Wang, Xiao
    Li, Aimin
    Wu, Chunfei
    Yin, Zhifan
    FUEL PROCESSING TECHNOLOGY, 2016, 148 : 380 - 387
  • [4] Hydrogen production from biomass tar by catalytic steam reforming
    Yoon, Sang Jun
    Choi, Young-Chan
    Lee, Jae-Goo
    ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (01) : 42 - 47
  • [5] Production of hydrogen-rich syngas from biomass gasification by double step steam catalytic tar reforming
    Cerone, Nadia
    Zimbardi, Francesco
    Contuzzi, Luca
    Striugas, Nerijus
    Eimontas, Justas
    Zito, Giuseppe Domenico
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 95 : 1215 - 1221
  • [6] Pyrolysis-Catalytic Reforming/Gasification of Waste Tires for Production of Carbon Nanotubes and Hydrogen
    Zhang, Yeshui
    Wu, Chunfei
    Nahil, Mohamad A.
    Williams, Paul
    ENERGY & FUELS, 2015, 29 (05) : 3328 - 3334
  • [7] Hydrogen and methane mixture from biomass gasification coupled with catalytic tar reforming, methanation and adsorption enhanced reforming
    Zhang, Jingjing
    Wang, Mei
    Xu, Shaoping
    Feng, Yanchun
    FUEL PROCESSING TECHNOLOGY, 2019, 192 : 147 - 153
  • [8] Hydrogen-Rich Syngas Production from Waste Textile Gasification Coupling with Catalytic Reforming under Steam Atmosphere
    Zhuang, Xinchao
    Zhu, Nengwu
    Li, Fei
    Lin, Haisheng
    Liang, Chao
    Dang, Zhi
    Zou, Yuquan
    PROCESSES, 2024, 12 (09)
  • [9] Acid Gas and Tar Removal from Syngas of Refuse Gasification by Catalytic Reforming
    Yuan, Guoan
    Zhou, Wei
    Yang, Rui
    Liu, Yuru
    Zhu, Jingyu
    Yin, Ke
    Chen, Dezhen
    CATALYSTS, 2022, 12 (12)
  • [10] A novel process simulation model for hydrogen production via reforming of biomass gasification tar
    Shamsi, Mohammad
    Obaid, Ahmed Abbas
    Farokhi, Saman
    Bayat, Ahmad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (02) : 772 - 781