Minimal-length interoperability test sequences generation via genetic algorithm

被引:0
|
作者
School of Information Science and Technology, Beijing Institute of Technology, Beijing 100081, China [1 ]
机构
来源
J Beijing Inst Technol Engl Ed | 2008年 / 3卷 / 341-345期
关键词
Genetic algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Study of genetic algorithm method for circuit test generation
    Pan, Zhongliang
    Chen, Guangju
    Dianzi Keji Daxue Xuebao/Journal of University of Electronic Science and Technology of China, 26 (05): : 511 - 514
  • [32] Effective Generation of Test Case Based on Genetic Algorithm
    Shi, Zhiguo
    Zou, Liren
    Tong, Dapeng
    Wang, Mingqian
    MECHATRONICS AND INDUSTRIAL INFORMATICS, PTS 1-4, 2013, 321-324 : 2952 - 2955
  • [33] Proposal of Iterative Genetic Algorithm for Test Suite Generation
    Bansal, Ankita
    Jain, Abha
    Anand, Abhijeet
    Annk, Swatantra
    INTERNATIONAL JOURNAL OF INFORMATION SYSTEM MODELING AND DESIGN, 2021, 12 (01) : 111 - 130
  • [35] A test paper generation algorithm based on diseased enhanced genetic algorithm
    Cui, JunChuan
    Zhou, Ya
    Huang, Guimin
    HELIYON, 2023, 9 (06)
  • [36] Optimized Generation of Test Sequences for Interface Type Test between Train and ATP Onboard Equipment Using Deep Learning and Genetic Algorithm
    Yuan L.
    Gan Q.
    Li K.
    Fu Q.
    2018, Science Press (40): : 88 - 94
  • [37] Algorithm and Hardware Implementation for Generation of Low Power SIC Test Sequences
    Cao, Bei
    Wen, Dianzhong
    Li, Zhiyuan
    Zhang, Yichao
    Cao, Bei
    2015 FIFTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC), 2015, : 881 - 884
  • [38] A neurocomputing model for real coded genetic algorithm with the minimal generation gap
    D.-X. Gong
    X.-G. Ruan
    J.-F. Qiao
    Neural Computing & Applications, 2004, 13 : 221 - 228
  • [39] A neurocomputing model for real coded genetic algorithm with the minimal generation gap
    Gong, DX
    Ruan, XG
    Qiao, JF
    NEURAL COMPUTING & APPLICATIONS, 2004, 13 (03): : 221 - 228
  • [40] A genetic-algorithm-based approach to the generation of robotic assembly sequences
    Hong, DS
    Cho, HS
    CONTROL ENGINEERING PRACTICE, 1999, 7 (02) : 151 - 159