Microstructure evolution and strain rate sensitivity of ductile Hf20Nb10Ti35Zr35 medium-entropy alloy after thermal cycling

被引:0
|
作者
Wang, Shing-Hoa [1 ]
Liu, Chia-Heng [1 ]
Yeh, Jien-Wei [2 ,3 ]
Tsao, Tzu-Ching [4 ]
Li, Chia-Lin [4 ]
Chang, Horng-Yi [5 ]
Yang, Jer-Ren [4 ]
Hsueh, Chun-Hway [4 ]
Chang, Liu-Wen [6 ]
Zheng, Xue-Qian [1 ]
Lee, Yuan-Tzu [4 ]
Yang, Ya-Ching [7 ]
机构
[1] Natl Taiwan Ocean Univ, Dept Mech & Mechatron Engn, Keelung, Taiwan
[2] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan
[3] Natl Tsing Hua Univ, High Entropy Mat Ctr, Hsinchu, Taiwan
[4] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan
[5] Natl Taiwan Ocean Univ, Dept Marine Engn, Keelung, Taiwan
[6] Natl Sun Yat Sen Univ, Dept Mat & Optoelect Sci, Kaohsiung, Taiwan
[7] Bruker Taiwan Co Ltd, New Taipei City, Taiwan
关键词
Electron backscattering diffraction; Medium-entropy alloy; Precipitate; Misorientation angle; Strain rate sensitivity; Composite phase; BETA-TITANIUM-ALLOYS; OMEGA PHASE; MECHANICAL-PROPERTIES; HEAT-TREATMENT; DEFORMATION; NANOCRYSTALLINE; PRECIPITATION; NUCLEATION; ZIRCONIUM; TEXTURE;
D O I
10.1016/j.jallcom.2024.177726
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The medium-entropy alloy Hf20Nb10Ti35Zr35 has a ductile BCC structure in the as-solution-treated state and could be age-hardening with fine precipitates. In this study, the thermal stress produced by thermal cycling was found to accelerate the precipitation of the alpha" and the evolution of omega -> alpha phase of Hf20Nb10Ti35Zr35. The alpha"-martensite phase of Hf20Nb10Ti35Zr35 tended to grow in the (001)beta plane, with the misorientation angle being concentrated around 52 degrees after 10 thermal cycles. Moreover, the misorientation angle tended to have a bimodal distribution after 50 thermal cycles. Nanomechanical testing was performed to measure the strain rate sensitivity (SRS) at room temperature. The result shows that SRS of Hf20Nb10Ti35Zr35 changed from a small positive value of 0.09247 to a small negative one of either- 0.02125 or- 0.0445. This was mainly attributable to the decrease in the volume of the beta phase or the increase of the alpha" + alpha composite phase. This demonstrates that thermal cycling treatment of the present alloy could induce more precipitation of the second phase for hardening and enhance uniform deformation behavior.
引用
收藏
页数:11
相关论文
共 42 条
  • [1] Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35
    Su, I-An
    Tseng, Ko-Kai
    Yeh, Jien-Wei
    El-Sayed, Badr
    Liu, Chia-Heng
    Wang, Shing-Hoa
    SCRIPTA MATERIALIA, 2022, 206
  • [2] A body-centered cubic Zr50Ti35Nb15 medium-entropy alloy with unique properties
    Yan, Xuehui
    Zhang, Yong
    SCRIPTA MATERIALIA, 2020, 178 : 329 - 333
  • [3] Effect of thermomechanical treatment on the microstructure evolution and mechanical properties of lightweight Ti65(AlCrNb)35 medium-entropy alloy
    Liao, Y. C.
    Chen, P. S.
    Tsai, P. H.
    Jang, J. S. C.
    Hsieh, K. C.
    Chang, H. W.
    Chen, C. Y.
    Huang, J. C.
    Wu, H. J.
    Lo, Y. C.
    Huang, C. W.
    Tsao, I. Y.
    INTERMETALLICS, 2022, 143
  • [4] The evolution of microstructure and microhardness in a biomedical Ti-35Nb-7Zr-5Ta alloy
    Hendrickson, M.
    Mantri, S. A.
    Ren, Y.
    Alam, T.
    Soni, V.
    Gwalani, B.
    Styles, M.
    Choudhuri, D.
    Banerjee, R.
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (06) : 3062 - 3073
  • [5] Rapid air oxidation of a Ti-35Zr-10Nb alloy: Microstructure and wear behavior
    Hawk, JA
    Amick, DD
    Dogan, CP
    HARD COATINGS: BASED ON BORIDES, CARBIDES & NITRIDES: SYNTHESIS, CHARACTERIZATION & APPLICATIONS, 1998, : 347 - 358
  • [6] Microstructure Evolution and Mechanical Properties of Ti-35Nb-7Zr-10CPP Biocomposites
    He Zhengyuan
    Zhang Yuqin
    Zhou Rong
    Jiang Yehua
    RARE METAL MATERIALS AND ENGINEERING, 2016, 45 (04) : 1060 - 1065
  • [7] Microstructure, Tensile and Creep Properties of Ta20Nb20Hf20Zr20Ti20 High Entropy Alloy
    Larianovsky, Natalya
    Katz-Demyanetz, Alexander
    Eshed, Eyal
    Regev, Michael
    MATERIALS, 2017, 10 (08)
  • [8] The evolution of microstructure and microhardness in a biomedical Ti–35Nb–7Zr–5Ta alloy
    M. Hendrickson
    S. A. Mantri
    Y. Ren
    T. Alam
    V. Soni
    B. Gwalani
    M. Styles
    D. Choudhuri
    R. Banerjee
    Journal of Materials Science, 2017, 52 : 3062 - 3073
  • [9] Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40
    Soni, V
    Senkov, O. N.
    Couzinie, J-P
    Zheng, Y.
    Gwalani, B.
    Banerjee, R.
    MATERIALIA, 2020, 9
  • [10] The evolution of microstructure and micro-texture in a metastable Fe45Co35Cr 10V 10 medium-entropy alloy subjected to cold rolling
    Ondicho, Ibrahim
    Lee, Jae Heung
    Kwon, Hyeonseok
    Peleckis, Germanas
    Kim, Hyoung Seop
    Gazder, Azdiar A.
    MATERIALS CHARACTERIZATION, 2024, 214