共 50 条
GraphEIT: Unsupervised Graph Neural Networks for Electrical Impedance Tomography
被引:0
|作者:
Liu, Zixin
[1
]
Wang, Junwu
[2
]
Shan, Qianxue
[3
]
Liu, Dong
[1
,4
,5
]
机构:
[1] Univ Sci & Technol China, Suzhou Inst Adv Res, Sch Biomed Engn, Suzhou 215123, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Key Lab Microscale Magnet Resonance, Hefei 230026, Peoples R China
[5] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Graph neural networks;
image reconstruction;
unsupervised learning;
electrical impedance tomography;
D-BAR METHOD;
ELECTRODE MODELS;
D O I:
10.1109/TCI.2024.3485517
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Convolutional Neural Networks (CNNs) based methodologies have found extensive application in Electrical Impedance Tomography (EIT). Convolution is commonly employed for uniform domains like pixel or voxel images. However, EIT reconstruction problem often involves nonuniform meshes, typically arising from finite element methods. Hence, reconciling nonuniform and uniform domains is essential. To address this issue, we propose an unsupervised reconstruction approach, termed GraphEIT, designed to tackle EIT problems directly on nonuniform mesh domains. The core concept revolves around representing conductivity via a fusion model that seamlessly integrates Graph Neural Networks (GNNs) and Multi-layer Perceptron networks (MLPs). Operating in an unsupervised manner eliminates the requirement for labeled data. Additionally, we incorporate Fourier feature projection to counter neural network spectral bias, thereby guiding the network to capture high-frequency details. Comprehensive experiments demonstrate the effectiveness of our proposed method, showcasing notable improvements in sharpness and shape preservation. Comparative analyses against state-of-the-art techniques underscore its superior convergence capability and robustness, particularly in the presence of measurement noise.
引用
收藏
页码:1559 / 1570
页数:12
相关论文